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The scattering coefficient of water as a function of concentration of hydrosol particles is calculated. A new
quantum-mechanical approach to calculate the multiple-scattering phenomenon in seawater is proposed. The
approach is based on Maxwell’s equations for the light fields in stochastically scattering water with hydrosols.
The water is modeled as a thermally fluctuating medium filled with the particles. It is found that at small
concentrations of scatterers the scattering coefficient is linear in the concentration. At higher values of con-
centrations the dependence on the concentration may be approximated by a power law. © 1999 Optical So-
ciety of America [S0740-3232(99)01007-8]
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1. INTRODUCTION
In a majority of publications available today, the light-
scattering coefficient of water is considered linearly de-
pendent on the concentration of hydrosols.1 In situ
experiments4 show that at certain concentrations of chlo-
rophyll CC , typical of coastal waters, the dependence of
the water absorption coefficient on CC is nonlinear. It is
known5 that the scattering coefficient of water is nonlin-
early dependent on chlorophyll concentration, which is
strongly correlated to the concentration of scattering mat-
ter of biologic origin.

In this paper an attempt is made to develop a new ap-
proach to calculate the scattering coefficient of water as a
function of concentration of hydrosol particles Cp . The
approach is based on the solutions of Maxwell’s equations
in a stochastically scattering medium6 (water). The wa-
ter is modeled as a thermally fluctuating medium filled
with the hydrosol scatterers.

The result of this paper is Eq. (63) in Section 6 for the
water scattering coefficient. The scattering coefficient b
is linear in the concentration of scattering particles at val-
ues typical of the open ocean. The coefficient depends
quadratically on the concentration when the concentra-
tion is very small (typical of the Sargasso Sea waters).
At concentrations close to the values that are typical of
coastal waters, the dependence on concentration weakens
and reaches saturation at very high values. The results
of this paper can explain some experimental data ob-
tained in turbid coastal waters.

To investigate this problem, we start from Maxwell’s
equations in a stochastically scattering and absorbing me-
dium. The mathematical formalism of scattering in a
stochastic medium is identical to the formalism of quan-
tum statistical mechanics.6,7 The photons remain dis-
crete quantum particles.8–10 The principal challenges
are the mathematics involved in these calculations and
the fidelity of the modeling of the physics of photon scat-
tering. Fortunately, the computational techniques have
already been developed and tested.6,8,11 Because the
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quantum-mechanical approach in ocean optics is new, let
us show that this approach is relevant to the physics of
the light-scattering phenomenon in water.

As a starting point that will help to rationalize the mo-
tivation for this new approach, let us estimate the density
of solar photons near the sea surface. According to Ref.
12, the irradiance by sunlight near the sea surface, L ^ , is
less than 1.353 3 103 W/m2. At the same time the en-
ergy flux that is due to a single photon at 500-nm wave-
length is

sph 5 \v̄c ' 10210 W m

S v̄ 5
2pc

nwl̄
, l̄ 5 500 nm [ 5 3 1027 mD , (1)

where \ is the Planck constant, c is the speed of light in
vacuum, v̄ and l̄ are, respectively, the average visible
light frequency and wavelength, and nw ' 1.34 is the wa-
ter refractive index. Consequently, the density of the so-
lar photons near the sea surface, rph

^ , is

rph
^ 5

L ^

\v̄c
< 1013 m23 ' ~50 mm!23. (2)

The estimate given by Eq. (2) shows that one photon near
the sea surface at one moment of time occupies a volume
that is larger than a cube with 50-mm sides. According to
Ref. 13 the total concentration of particles with the radii
range 0.01–1 mm is approximately 5 3 1012–1013 m23.
It means that one photon is scattering on one or more par-
ticles. This is clearly a situation for quantum-
mechanical consideration. The classical approach im-
plies that the number of photons should be large enough
to neglect quantum phenomena.

The question arises as to why the classical theory is so
good for ocean optics. The answer is simple: This is a
result of the process of measurements. Let us consider
the process of measurement. Let a photoreceiver with
the time constant tr record the radiance falling on the
1999 Optical Society of America
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sensor area Sr . In this case the photoreceiver is averag-
ing the signal from the ensemble of photons that are en-
closed in the volume

Vr 5 Srtrc 5 NphVph . (3)

The number Nph of photons averaged by the photoreceiver
is

Nph 5
SrtrL ^

\v̄
5 L ^

Srtrl̄nw

2p\c
. (4)

As a typical photoreceiver let us choose the device with
tr 5 0.02 s and Sr 5 0.05 cm2. For this device the aver-
aging volume is Vr 5 30 m3. This volume corresponds to
averaging of 1014–1015 photons near the sea surface or
Nph ; (1014–1015)Ta below the sea surface (here Ta is an
attenuation factor). For typical hydro-optical devices
Nph is always large enough to make the measurement re-
sults look classical.

2. APPROACH
The radiative transfer theory, predominantly used in
ocean optics,14–18 cannot explain the nonlinear depen-
dence of the inherent optical properties on the concentra-
tion of scatterers. The correct derivation of the scalar ra-
diative transfer equation18–23 goes through the following
chain: Maxwell’s equations→Dyson’s and Bethe–
Salpeter’s equations→ vector radiative transfer
equation→ scalar radiative transfer equation.24 Each
step in this chain is connected with a loss of precision and
a loss of opportunity to derive certain physical properties.
At the level of the vector radiative transfer equation, the
opportunity to derive inherent optical properties as a
function of concentrations of dissolved and suspended
matter and other physical properties of the medium is al-
ready lost.

In this paper the scattering coefficient of hydrosol par-
ticles is calculated through the dielectric permittivity of
the hydrosol component in the water. The dielectric per-
mittivity is a constituent part of the Fourier transform of
the Green’s function of Maxwell’s equations in water. By
definition, the Green’s function is a solution of these equa-
tions when a source function is assumed as infinitely
short and localized at one point light pulse.26

3. INTERACTION HAMILTONIAN
To solve a scattering problem in classical electrodynam-
ics, we need a vector or scalar wave equation derived from
Maxwell’s equations. This equation includes a time-
dependent and inhomogeneous-in-space term propor-
tional to the dielectric permittivity of the medium. Dif-
ferent ways of averaging the electric fields, its binary
products, and dielectric permittivity fields produce vari-
ous theories of light propagation in a scattering medium.
It is possible to reformulate the classical Maxwellian
theory in terms of quantum mechanics. This approach is
based on the concept of a scattering matrix that is defined
as
S 5 T̂ expF2iE
0

`

Ĥ int~t !dtG . (5)

Here Ĥ int is an interaction Hamiltonian, i.e., the change
in the energy of the system after the introduction of scat-
tering elements with subsequent replacement of the
physical values (velocities, vector potentials, etc.) by cor-
responding operators; t is the time; and T̂ is the ordering
operator: it rearranges the operators in Eq. (5) in such a
manner that the operators taken at a later time always
appear to the left of the operators taken at earlier times.
Let us assume that the seawater with hydrosols has the
wave functions u0& and u`& before and after the act of pho-
ton scattering. Then these functions are coupled with
the following equation:

u0& 5 Su`& [ T̂ expF2iE
0

`

Ĥ int~t !dtG u`&. (6)

All averaging procedures in quantum-mechanical scatter-
ing involve the scattering matrix given by Eq. (5). Now
we derive the interaction Hamiltonian between photons
and absorbing and scattering seawater filled with hydro-
sol particles.

Let us use a standard method for the derivation of the
interaction Hamiltonian.27 The change in the energy E
of water after insertion of hydrosol particles is

dE 5 ~4p!21E d3r E~r, t !d D~r, t !, (7)

where E(r, t) is the electric field, d D(r, t) is the change
in the electric displacement D(r, t) related to the differ-
ence between the dielectric permittivity of hydrosol par-
ticles and the dielectric permittivity of surrounding wa-
ter, r is a spatial coordinate, and t is the time. The
electric displacement inside a hydrosol particle is28

Dm~r, t ! 5 E~r, t ! 1 E
0

`

fm~t8!E~r, t 2 t8!dt8, (8)

where m denotes the number of the particle and the func-
tion fm determines the dispersion properties of the mth
hydrosol particle. For further convenience let us intro-
duce the following Heaviside-type26 function:

Um~r 2 rm! 5 H 1, r P Vm

0, r ¹ Vm
, (9)

which is equal to unity inside the mth particle and equal
to zero outside (here rm is a vector that points to the grav-
ity center of the mth particle, and Vm is the volume of the
mth particle). Using the function Um , we write down
the change in the energy of the water caused by insertion
of hydrosols. The change in electric displacement is

d D~r, t ! 5 E
0

`

d f~r, t8!E~r, t 2 t8!dt8, (10)

d f~r, t8! 5 (
m

^Um~r 2 rm!&m@ fm~t8! 2 fw~t8!#, (11)

where fw(t) is a dispersion function of the water without
hydrosols. The angle brackets ^ • &m denote averaging
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over all possible positions of rm . The summation is
made over all hydrosol particles in the water volume V0 .

According to Ref. 28, the distribution function of hydro-
sol particles can be represented as a series over the pow-
ers of water density:

F~r, t ! > a1r~r, t ! 1 a2r2~r, t ! 1 ...,

E F~r, t !d3r 5 1, r~r, t ! 5 r0 1 dr~r, t !,

r0 ' 1 g/cm3, (12)

where r0 5 V0
21*r(r, t)d3r is the average water density

in the volume V0 and dr(r, t) is the water density fluc-
tuation. Let us keep only the first term in relation (12);
then we have

F~r, t ! >
r~r, t !

V0r0
5

1

V0
1

dr~r, t !

V0r0
, (13)

^Um~r 2 rm!&m 5 E F~r8, t !Um~r 2 r8!d3r8

5 Cm 1
1

V0r0
E dr~r, t !Um~r 2 r8!d3r,

(14)

where Cm 5 Vm /V. In this case

d f~r, t8! 5 (
m

Cm@ fm~t8! 2 fw~t8!#

1
1

r0
E dr~r8, t8!v~r 2 r8, t8!d3r8, (15)

where

v~r, t ! 5
1

V0
(
m

Um~r!@ fm~t ! 2 fw~t !#. (16)

For the changes in the electric displacement, we have

d D~r, t ! 5 d D0~r, t ! 1 d Ds~r, t !, (17)

where

d D0~r, t ! 5 (
m

CmE
0

`

dt8@ fm~t8! 2 fw~t8!#E~r, t 2 t8!,

(18)

d Ds~r, t ! 5 r0
21E

0

`

dt8E d3r8 dr~r8, t !

3 v~r 2 r8, t 2 t8!E~r, t 2 t8!. (19)

The first correction term in Eq. (17) is not related to the
scattering. It determines a correction to the water di-
electric permittivity that is due to the introduction of hy-
drosols. In Section 4 we incorporate this term into the
original water dielectric permittivity by renormalizing its
value.

When the volume concentration of hydrosol particles is
small (CV [ (mCm ! 1023), it is possible to neglect dis-
persion properties of particles. In this case we have

fm~t ! 2 fw~t ! > ~em 2 e0w!d ~t 1 0 !, (20)
where em is the dielectric permittivity of the mth hydrosol
particle, e0w is the dielectric permittivity of the water
without particles, and d (t) is the Dirac delta function.26

Taking into account relation (20), we have

v~r, t ! 5 dehCVD~r!d ~t 1 0 !, (21)

deh 5 CV
21(

m
~em 2 e0w!Cm

5 CV
21(

m
emCm 2 e0w 5 ēh 2 e0w , (22)

D~r! 5
1

dehCVV0
(
m

~em 2 e0w!Um~r!,

E D~r!d3r 5 1. (23)

According to Ref. 27, moving-density fluctuations may be
represented as quasiparticles named phonons.

Let us express the water density fluctuation through
the properties of the phonon field. The continuity equa-
tion for density fluctuations is written as

]r~r, t !

]t
1 div@q̇~r, t !r~r, t !# 5 0, (24)

where q(r, t) is a fluctuation coordinate. In the first ap-
proximation relative to dr(r, t), we have the following
equation27:

dr~r, t !

r0
5 2¹q~r, t ! 5 2

f~r, t !

u0Ar0

, (25)

where u0 is the velocity of the thermal fluctuation in
water29 (with the linear phonon dispersion law: v0(k)
5 u0uku, where k is the phonon’s momentum) and f(r, t)
is a function that determines a high-frequency phonon
field. By substituting Eqs. (19), (21), and (23) into Eq.
(7), we have the following equation for the change of en-
ergy of water:

dE 5 2
dehCV

4pu0Ar0

E d3r E~r, t !

3 E d3r8 D~r 2 r8!f~r8, t !E~r8, t !, (26)

where

D~r! 5

E
r

`

f~r8!dr8

4pE
0

`

r82 dr8E
r8

`

f~r9!dr9

. (27)

The hydrosol particles in this model are perceived as
small potentials in a Brownian motion.30–34 They are
characterized by the size distribution function f(r)
@*0

`f (r)dr 5 1#.
Let us express the electric field E(r, t) through the po-

tentials of the electromagnetic field:
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E~r, t ! 5 2
1

c

]A~r, t !

]t
2 grad@F~r, t !#, (28)

where A is the vector potential, F is the scalar potential,
and c is the speed of light in vacuum. We accept the cali-
bration with F 5 0. Such a model allows one to derive
the operator of thermal density fluctuations ĉ. Let us in-
troduce the following dimensionless parameters:

c ~r, t ! 5
1

4p
S r̄3

T D 1/2E d3r8 D~r 2 r8!f~r8, t !

[ 2
r̄

4p
F r̄u0~T !

r0T G1/2E D~r 2 r8!dr~r8, t !d3r8, (29)

g 5 kgCV , kg 5 dehF T

r̄3ru0
2~T !

G1/2

' 103 –105,

(30)

where r̄ 5 *0
`f(r)r dr is the mean radius of the hydrosol

particles and T is the absolute temperature in kelvins.
Now we arrive at the formula for the interaction

Hamiltonian between photons and thermal density fluc-
tuations:

Ĥ int~t ! 5 2
g

c2 E d3r
]Âa~r, t !

]t
ĉ~r, t !

]Âa~r, t !

]t
,

a 5 1, 2, 3, (31)

where Âa is a photon field operator that corresponds to a
vector potential of the light wave and index a denotes a
vector’s component. Repeating indices everywhere in
this paper imply summation.

4. GREEN’S FUNCTION
The Green’s function of light in seawater with hydrosol
particles is represented by the following equation [see
Ref. 27, Eq. (28.7)]:

Gab~t1 2 t2 , r1 , r2!

5 2 Tr$exp@~F 2 Ĥ int!/T#exp~Ĥ intut1 2 t2u!

3 Aa~r1!exp~2Ĥ intut1 2 t2u!Ab~r2!%, (32)

where F is the free energy of the system and the symbol
Tr (trace) denotes the summation over diagonal elements
of the matrix. The photon Green’s function Gab in the
space–energy representation satisfies the following wave
equation derived from Maxwell’s equations:

@e~v, r!v2dab 2 curlag curlgd#Gdb~v, r, r8!

5 4pdabd ~r1 2 r2!. (33)

The Green’s function Gab
(0)(t1 2 t2 ,r1 , r2) of light in

seawater without hydrosol particles is represented by Eq.
(32) with Ĥ int 5 0. The function Gab

(0) in the space–
energy representation satisfies the following wave equa-
tion:

@e0~v, r!v2dab 2 curlag curlgd#Gdb
~0 !~v, r, r8!

5 4pdabd ~r1 2 r2!. (34)
The Green’s function of photons propagating in a non-
scattering medium with the dielectric permittivity e0 can
be represented as a sum of the transverse and longitudi-
nal components. In the energy–momentum representa-
tion it has the following form (see Ref. 28, Chap. 6):

Gab
~0 !~v, k! 5 G0

tr~v, k!~dab 2 nanb! 1 G0
l ~v, k!nanb ,

(35)
where

G0
tr~v, k! 5

4p

e0v2/c2 2 k2 , G0
l ~v, k! 5

4pc2

e0v2 , (36)

na is the component of the unity vector in the direction of
k, and dab is Kronecker’s symbol or the unity tensor.26,28

The Green’s function of the photon field, which includes
multiple scattering that is due to the interaction with
thermal fluctuations described by the Hamiltonian (31),
can be written as

Gab~v, k! 5 Gtr~v, k!~dab 2 nanb! 1 Gl~v, k!nanb ,

(37)

Gtr~v, k! 5
4p

etrv2/c2 2 k2 , Gl~v, k! 5
4pc2

e lv2 , (38)

where etr and e l are, respectively, the transverse and lon-
gitudinal components of the dielectric permittivity tensor:

eab~v, k! 5 etr~v, k!~dab 2 nanb! 1 e l~v, k!nanb .
(39)

It is clear from Eqs. (37)–(39) that the problem of find-
ing the dielectric permittivity is equivalent to the problem
of finding the Green’s function.

Let us calculate the multiple-scattering Green’s func-
tion and the corresponding dielectric permittivity. As a
starting zero approximation, let us take the Green’s func-
tion (35) that corresponds to the pure water. The dielec-
tric permittivity of the clear water depends only on the
circular frequency v:

eab
0 ~v! 5 e0~v!dab [ e0~v!~dab 2 nanb! 1 e0~v!nanb .

(40)
It means that Eq. (40) takes into account only temporal
dispersion that is determined by the processes of absorp-
tion and emission of photons by the water molecules.

The transverse and longitudinal components of the wa-
ter dielectric permittivity that takes into account pro-
cesses of multiple scattering on the hydrosol particles can
be expressed as

e tr~v, k! 5 e0~v! 1 detr~v, k!,

e l~v, k! 5 e0~v! 1 de l~v, k!,

e0~v! 5 e08~v! 1 ie 09~v!, (41)

where e08 and e09 are the real and imaginary parts of the
dielectric permittivity of pure water.

To calculate de tr and de l, let us carry out the standard
procedure24 to calculate corrections to the Green’s func-
tion starting from the Hamiltonian given by Eq. (31).
The calculations are carried out on a discrete set of points
distributed over the imaginary axis of the complex fre-
quency v̂ 5 v 1 ivn (vn 5 2pnT, n 5 0, 61, 62, ...) in
the system of units with c 5 \ 5 1. This procedure cor-
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responds to using the temperature Green’s-function tech-
nique proposed by Matsubara.35 This technique is valid
when the temperature of seawater (Tw ; 300 K) is much
less than the temperature of light radiation (Trad
; 30,000 K). There is one important feature that sim-
plifies this technique: the dispersion law of phonons is
irrelevant. This feature is a consequence of the fact that
the water mass in the fluctuating volume (phonon mass)
is much larger than the photon mass. The scattering of
the photon on a hydrosol particle pushed by the phonon
occurs without a change of energy (elastic scattering).
Only the momentum of the photon changes. This feature
allows us to drop all summations over discrete frequen-
cies. Further calculations can be carried out either ana-
lytically or with the help of Feynman diagrams.

The decomposition of the exponential terms in Eq. (32)
into series and transition to the energy–momentum rep-
resentation (Fourier transform) leads to the rules11 in
Subsection 4.A to calculate the Green’s function of light in
seawater with hydrosol particles by means of the Feyn-
man diagram technique.

A. Rules for the Diagram Technique
The photon Green’s function is represented as a dashed
line, and the phonon Green’s function is represented as a
dotted line. A subscript (a Greek letter such as a or b) is
associated with the end of each line. Each line has its
own energy and momentum.

So let us form all connected topologically nonequivalent
diagrams containing 2n circles and two external photon
lines. All diagrams with an odd number of circles are
equal to zero because the average of the product of an odd
number of phonon operators, proportional to the density
fluctuation, is equal to zero [see Eqs. (25) and (29)]. The
circles of even diagrams are connected with the dotted
(phonon) lines. An arbitrary diagram of 2nth order con-
tains 3n 2 1 internal lines and 2n apexes denoted by
circles. When the order of scattering is calculated, the
following rules are satisfied:

1. Input and output photon lines correspond to the ex-
pression

6ivnGab
~0! ~vn , k!, (42)

where

Gab
~0 ! ~vn , k! 5 2

4p~dab 2 nanb!

e0vn
2 1 k2 2

4pnanb

e0vn
2 . (43)

2. An internal photon line corresponds to the expres-
sion

vn
2Gab

~0 ! ~vn , k!. (44)

3. The internal phonon line is represented by

r̄3

4p 2T
D2~q!D ~0 !~0, q! > 2

r̄3

4p 2T
D2~q !, (45)

where

D~0!~v, q ! 5
v0

2~q !

v2 2 v0
2~q ! 1 id

,

v0~q! 5 u0uqu, D~q ! [ E d3r exp~2iqr!D~r!

(46)

(d is a very small positive value significant only when v
Þ 0).

4. The result is multiplied by the factor

F2
g2T

~2p!3Gn

. (47)

5. The law of momentum conservation is satisfied in
each vertex (circle). The energy or the frequency is
transferred only over photon lines (elastic scattering).

B. Dyson’s Equation
Using the rules presented in Subsection 4.A, we can write
down the following Dyson’s equation27 for the Green’s
function of the photons in turbid water:

Gab~vn , k! 5 Gab
~0 !~vn , k! 1 Gag

~0 !~vn , k!

3 pgm~vn , k!Gmb~vn , k!,

pab~vn , k! 5 2ghE d3q D2~q!Gag~vn , k 2 q!

3 Ggb~vn , k 2 q, k!,

h 5 r̄3vn
4/~2p!5, (48)

where pab is the polarization operator and Gab is the total
vertex part that corresponds to the sum of all orders of
photon scattering. The polarization operator is linked to
the dielectric permittivity tensor by the equation

deab~vn , k! 5
4p

vn
2 pab~vn , k!. (49)

Figure 1 shows the graphical form of Dyson’s equation
(48). The thick dashed lines represent the total photon
Green’s function. The triangle represents the total ver-
tex part. In the derivation of Eq. (48), the effects of light
scattering on itself (closed photon loops connected with
the main photon line by phonon lines) are neglected. The
input from these effects is extremely small. Only the
diagrams with a single continuous photon line interacting
with phonons are considered.

To calculate the vertex part, let us consider the pertur-
bation series shown in Fig. 2. Because of the complexity
of the diagrams’ topology and the lack of a simple struc-
ture, it is impossible to formulate a simple integral equa-
tion for the vertex part. But close analysis of the pertur-
bation series displayed in Fig. 2 shows that, among
diagrams of the same order, the largest ones can be dis-
assembled by cutting only two phonon lines. The photon
Green’s functions that correspond to these diagrams are
paired together in such a manner that the poles of each
Green’s function merge when the transferred momentum
p→ 0. In Fig. 2 such diagrams are marked as a and c.

Fig. 1. Graphical form of Dyson’s equation (48).
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By summing these largest diagrams, we have the equa-
tion for the total vertex part, shown in Fig. 3 as a dia-
gram. It corresponds to the following integral equation
for the vertex part:

Gab~k 2 p, k!

5 gdab 1 hE d3q D2~q!Gam~k 2 p, k 2 p 2 q!

3 Gmh~k 2 p 2 q!Ghn~k 2 p 2 q, k 2 q!

3 Gnk~k 2 q!Gkb~k 2 q, k!. (50)

To solve Eq. (50), we restrict ourselves to the scattering
on large particles (2 r̄ @ l), where l is the wavelength of
light. In this case p , q , 1/r̄ ! k. By representing
the vertex part as the sum of transverse and longitudinal
parts, analogously to Eq. (39), integrating over momen-
tum q, and analytically expanding to the real frequency
axis, we obtain the following system equations for the
components of the vertex part:

Gtr 5 g 1
r̄2v4

2p 2k2c4 ~Gtr!3, G l 5 g 1
2

3p 2~e l!2 ~G l!3.

(51)

5. DIELECTRIC PERMITTIVITY
Let us derive equations that link corrections to the dielec-
tric permittivity with the vertex part. Using Eqs. (31),
(40), (48), and (49), integrating over momentum q, and
analytically transferring to the real frequency axis, we
have the following equations:

etr 5 e0 1 ig
r̄vuvu

16pkc2 Gtr, e l 5 e0 2
g

6p2e l G l.

(52)

To have a closed system of equations, we add the disper-
sion relation taken from Maxwell’s equations:

k2 5 etrv2/c2. (53)

Fig. 2. Perturbation series for the vertex part Gab .

Fig. 3. Graphical form of the approximate integral equation (50)
for the vertex part Gab .
Now we have two complete systems of equations for the
complex parameters e tr and e l:

e l 5 e0 2
g

6p2e l G l, G l 5 g 1
2

3p2~e l!2 ~G l!3,

(54)

k2 5 etr
v2

c2 , etr 5 e0 1
igx

16pAetr
Gtr,

Gtr 5 g 1
x2

2p2etr ~Gtr!3, (55)

where x 5 r̄uvu/c 5 2p r̄/l is the size parameter.36 In
the general case of arbitrary values of x and g (which cor-
responds to arbitrary concentrations), the systems of
equations (54) and (55) have no analytic solutions. For
the value of the parameter

g , 4A2e0
8 /3, CV , 2 3 1023 ~or Cp , 2 g/m3!,

(56)
we have an approximate solution for the longitudinal
component of the dielectric permittivity tensor:

e l 5 e08H 1 2
h

3
sinF1

3
sin21~3h!G J ,

h 5
CVdeh

pe08
S T
2 r̄3ru0

2D 1/2

, (57)

where Cp [ rCV is the concentration of hydrosol particles
in conventional units (g/m3). According to Eqs. (54), e l is
determined only by the water properties. As is seen from
Eqs. (54), this is also true for any water turbidity.

6. SCATTERING COEFFICIENT
Let us write an expression that connects the transverse
part of the dielectric permittivity etr with the beam scat-
tering coefficient b. According to wave theory and Bou-
guer’s law, the absolute value of the photon wave vector k
is

k 5 k0 1 i~a 1 b !/2; (58)

at the same time, from the dispersion relationship we
have

k 5
vAetr

c
. (59)

By introducing an auxiliary variable

z 5 iAetr (60)

and taking into account that the absorption coefficient a
is due to absorption processes in background water, which
are not included in our calculations, we have

b 5
4p

l
Re~z ! [

4p

l
Im~Aetr!. (61)

By solving Eqs. (55) with respect to etr and replacing it
with the variable z according to Eq. (60), we have the fol-
lowing algebraic equation of seventh order with respect to
z:
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Table 1. Values of the Parameter Re(z) for Different Size Parameters x 5 (2p r̄)/l and Concentrations

g

x

20 200 2000 20,000

0.001 0.0000382520083981352 0.00003889708867014887 0.00004405591503813641 0.00006808675127872522
0.01 0.0003889968127614913 0.0004413463309078073 0.0006808672289176459 0.001331001567394975
0.1 0.004413414061668614 0.006808408679003452 0.01330778093474727 0.02801921767710799
0.3 0.01560196002156826 0.02763816807094165 0.05656906619476877 0.119261899074067
0.5 0.028843048657225 0.05355156834986856 0.1103724238115074 0.2273210624193799
1.0 0.06782403253850639 0.130962807451096 0.2629058831299653 0.4915729190820884
3.0 0.2607548913473402 0.4718230761749745 0.7903553580963729 1.221217048860729
5.0 0.4547320997689933 0.7537526964658059 1.16805018412666 1.722581232924349

10 0.8461096101753952 1.275010732778465 1.85970893251966 2.653578357080784
20 1.401622773034389 2.010392007934948 2.851179681305613 4.007903143447798
40 2.18674273530717 3.067821116464854 4.296750683666268 5.999602204397481
80 3.318417336257999 4.612472826798015 6.425117946818375 8.944848607997034

160 4.973479661691648 6.888735539322619 9.574155923744264 13.31161745998768
320 7.413249143693385 10.25776056977357 14.24414545197939 19.79389237565583
640 11.02398143083176 15.25446521655215 21.17714270651046 29.42191539762678

1280 16.37789542378423 22.67241926639643 31.47487451805124 43.72591945758872
2560 24.3239651017216 33.68991934073195 46.77382967672264 64.97934212108541
5120 36.12275211972931 50.05723270267769 69.50535480801077 96.56017019972301

10,000 52.9255369717243 73.37394015133673 101.8919179243287 141.5563893122459

Table 2. Regression Coefficients for Equation (63)

x b1 b2 b3 a g g0

20 0.09806933 20.001680836 0.00001488722 0.266087787 0.5754037 40
200 0.16837140 20.004626691 0.00006162638 0.365200048 0.576702 20

2000 0.27688820 20.007127919 20.00019729570 0.506416969 0.577014 10
20,000 0.49303440 20.025888510 20.00076870260 0.704132733 0.5770671 5
Fig. 4. Concentration dependence of the relative scattering co-
efficient Re(z) for size parameter x 5 (2p r̄)/l 5 20.
 Fig. 5. Same as Fig. 4, but for x 5 200.
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16pz~e0 1 z2!@ g2 1 128~e0 1 z2!2# 2 g4x 5 0. (62)

Equation (62) has no analytic solutions. A numerical
analysis shows that it has one real and six complex roots.
There is only one complex physical root of Eq. (62).37 The
real part of this physical root, which can be used for cal-

Fig. 6. Same as Fig. 4, but for x 5 2000.

Fig. 7. Same as Fig. 4, but for x 5 20,000.
culation of the scattering coefficient with Eq. (61), is com-
puted for different sets of parameters x and g and in-
cluded in Table 1.

Using values given in Table 1, we obtain the following
regressions, which express the scattering coefficient as a
function of the concentration parameter g ; Cp :

b 5
4p

l
H b1 g 1 b2 g2 1 b3 g3, g , g0

agg, g > g0
, r2 . 0.999.

(63)

The values of parameters b i (i 5 1, 2, 3), a, g, and g0 for
different values of the size parameter are given in Table
2.

Figures 4–7 show the concentration dependence of pa-
rameter Re(z) 5 bl/(4p) for different values of the size pa-
rameter x.

At very small concentrations of particles, the depen-
dence b( g) [ b(Cp) 5 (4p/l)Re@z(Cp , x)# is linear in
concentration ( g or Cp). At higher concentrations this
dependence is similar to the experimental dependence
proposed by Prieur and Sathyendranath.4

7. CONCLUSION
It is shown that the approach based on Maxwell’s theory
in a stochastically scattering medium can be productively
used in ocean optics. The dielectric permittivity tensor of
water with imbedded scattering particles is found as a so-
lution of Dyson’s equation. Starting from the equations
for the dielectric permittivity, a nonlinear dependence of
the scattering coefficient of water is derived. It is shown
that the scattering coefficient of water depends nonlin-
early on the concentration of scatterers. The dependence
is linear when the concentration of scattering particles is
very small. At higher concentrations the concentration
dependence weakens and can be represented by a power
law: b ; Cp

0.576 .
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