
Exact solution of the characteristic equation for transfer in
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A special form of anisotropic scattering phase function is shown to provide an exact solution of the character-
istic equation for radiation transfer at depth within a scattering and absorbing medium. The solution is the
Henyey-Greenstein function, the degree of extension of which depends on the albedo for single scattering
and on the parameter of the phase function. Good applicability of the formulas obtained for a description of
integral parameters of light fields in the seawater depth has been demonstrated.

Exact solutions of the transfer equation play an important
role in the study of the special features of light scattering in
turbid media. On one hand, they can serve as test examples for
developing programs for computational solution of this equa-
tion; on the other, they make it possible to obtain analytical con-
nections between the apparent and inherent optical properties
of the scattering medium.

There are few exact analytical solutions of the transfer equa-
tion which express the brightness distribution in the form of a
compact formula. It is possible to mention, for example, the
solution for the cases of isotropic and delta-function scattering
as well as their combination-transport approximation. These so-
lutions provide a good description of the limiting cases of iso-
tropic and extremely anisotropic scattering, but they are hardly
suitable for a precise description of phenomena actually exist-
ing in nature. This study’ describes a new exact asymptotic so-
lution of the transfer equation for an anisotropically scattering
medium.

II.   Derivation of Main Formulas
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Here L z( , , )m f  is the radiance at depth z , measured from the

upper boundary of a semi-infinite layer; m q= cos ; q  is the

zenith angle; c a b= +  is the attenuation coefficient; a  and b
are the absorption and scattering coefficients; p(cos )c is the
scattering phase function calibrated according to condition
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, f  and

¢f  are the azimuthal angles, ¢ = ¢m qcos , c  is the scattering
angle.

Taking into account the invariance under shift, we seek a
solution of Eq. (1) at a depth within a scattering medium of the
form

L z L z L( , , ) ( , ) ( ) exp( )m f m y m gt∫ = -0 , (2)

where L0  is determined from the boundary conditions, t = c z
is the optical depth, g  is the minimum eigenvalue2 of Eq. (1) in
terms of the absolute value ( cg  is the attenuation coefficient
for totally diffuse light). Substituting Eq. (2) in Eq. (l),we ob-
tain the characteristic equation of the transfer theory

1 20 1

1
-( ) = ( ) ¢ ¢ ¢

-Úg m y m w y m m m m( ) / ( ) ( , )p d (3)

where w 0 = b c/  is the albedo for single scattering, p( , )m m ¢
is the aximuth-mean phase function,
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Let us require the brightness distribution y m( )  to satisfy the

standardization condition

We proceed from the scaler equation of radiation transfer in
a scattering and absorbing medium

I.   Introduction

1 February 1988 / Vol. 27, No.3 / APPLIED OPTICS 599



0 5 1
1

1
. ( )y m md =

-Ú .

Let us represent the phase function p(cos )c , the azimuth

mean phase function p( , )m m ¢ , and the desired solution y m( )
in the form of Legendre polynomials series
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Substituting Eqs. (5) and (6) in Eq. (3) and utilizing the recur-
sion
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we can obtain recursion relations between coefficients y n  and

sn :
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since y 0 0 1= =s , and
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is the mean cosine or asymmetry factor for the depth’s radiance
distribution y m( ) , we get from Eq. (9) the familiar ratio

g w h= -( ) /1 0 . (10)

The objective of our study is to obtain any exact and com-
pact analytical solution of Eq. (3) for the strongly anisotropic

function p( , )m m ¢ . Consequently, we should either cut off se-

ries (6) with respect to n  or obtain a solution y n{ } , which is

assembled into the analytic function. From Eq. (8) it is easy to
see that the first procedure is impossible with any selection of
sn .

Let us examine a second approach. We shall attempt to pro-

ceed from the reverse. We shall find the function p( , )m m ¢  with
which the solution of Eq. (3) will be a radiance distribution elon-
gated into the depths of a scattering medium. It is convenient to
select the Henyey-Greenstein function as such a distribution:
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Substituting in Eq. (8) y hn
n= , we obtain

s g n nn = + >2 1 0,   , (12)
where

g = + - -( ) / ( ) ( ) / ( )1 2 1 20 0 0 0
2w w w w h . (13)

By combining Eq. (12) and Eq. (5), we obtain the expansion

p g n P P

g P P

n n
n

n n
n

( , ) ( ) ( ) ( )

( ) ( ) ( ).

m m m m

m m

¢ = + ¢

+ - ¢

=

�

=

�

Â

Â

2 1

1

0

0

(14)

The first part on the right-hand side of Eq. (14) is proportional
to Dirac’s delta function, integrated in terms of the rule
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and having the following expansions in terms of Legendre’s
polynomials,3
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It is easy to derive an expression for the second item in Eq. (14)
by integrating the expansion of the generating function for
Legendre polynomials
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over azimuthal angle f ,
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and taking the limit as t Æ 1.
So we have
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Consequently, the phase function p pH(cos ) (cos )c c= , where
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corresponds to the azimuth mean phase function (14).
Thus the radiance distribution (11) is the exact solution of

Eq. (3) with phase function (21) which should be understood as
a generalized function.4 The parameter g  and the asymmetry
factor h  are expressed, as follows, through the inherent optical
properties of the medium
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where x b a bb b= +/ ( ) , b Bbb =  is the backward scattering co-
efficient;
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is the backward scattering probability on phase function (21).

APPLIED OPTICS / Vol. 27, No. 3 / 1 February 1988600



Let us calculate some integral parameters5 of the light field in
the depth of a scattering medium,

       E B d E B dd u0 0 0

1

0 0 1

0
2 2= =Ú Ú-

p y m m p y m m( ) ,  ( ) , (24)

downward and upward scalar irradiances,

    E B d E B dd u= = -Ú Ú-
2 20 0

1

0 1

0
p y m m m p y m m m( ) ,  ( ) , (25)

upward and downward irradiances caused by diffuse light, here
B L0 0= -exp( )g t ,

m md d d u u uE E E E= =/ ,   /0 0 (26)
average cosines of the depth’s irradiance distribution for the
lower and upper hemisphere,

R E E R E Eu d H u d0 0 0= =/ ,   / (27)

where RH  is the diffuse reflectance or irradiance ratio in the
depth of the scattering layer.

Substituting Eq. (11) in Eqs. (24)-(27), we will get for m md u, ,

scalar irradiance ratio R0  and RH ,

m h h hd = + + + -[ ]{ }( ) ( )/ /1 1 1 1 22 1 2 2 1 2 , (28)

m h h hu = + - + -[ ]{ }( ) ( )/ /1 1 1 1 22 1 2 2 1 2 , (29)

R0
2 1 21 1 1= - -[ ] + -[ ]( ) ( ) ( ) /h h h h , (30)

RH = - -[ ] + -[ ]( ) ( ) ( ) /1 1 1 2 1 2 2
h h h h . (31)

For scattering media of the type of seawater, where x is small,
we have

h = - <<1 3 414 1. ,   x x , (32)

R x xH = <<0 293 1. ,   . (33)

Figure 1 shows the dependences m md u, , and RH  given by Eqs.
(28), (29), and (31) as the functions of the asymmetry factor h .
It is seen that the values obtained from Eqs. (28) and (31) pro-
vide a good description of the experimental data of Timofeyeva.6

Fig. 1.  Parameters of the light field in the depth of a scattering me-

dium as a function of the asymmetry factor h : md (l), mu (2), and

RH (3). The black marks are Timofeyeva’s experimental data6: md (E1)

and R(E3)

Fig. 2.  Ratio R x R Ri/ ( )=  as a function of the parameter x . The

values Ri  are calculated using the formulas 1–(37), 2–(38), 3–(39),
4–(34), 5–(35), 6–(36).

R x x xB = + + +0 0001 0 3244 0 1425 0 13082 3. . . . , (35)

R x x xG = + + +0 0003 0 3687 0 1802 0 07402 3. . . . . (36)
Equation (35) gives the values of the DR of the sea when its

surface is illuminated by light directed to the nadir and Eq.
(36), when its surface is illuminated by diffuse light. Figure 2
shows the values R x/  calculated with the use of Eqs. (35) and
(36) and Eq. (34) (curves 5, 6, and 4). It is seen that throughout
the range of validity of Eqs. (35) and (36), Eq. (34) gives a very
good approximation and is usable for calculating the DR of the
sea depth.

For comparison, the figure also shows the behavior of the
values R x/  for the amounts of the DR R Ri= , calculated by
the formulas of Gamburtsev,8 Gurevich,9 and Kubelka-Munk,10

R a b a a b b x xK b b b= + - +[ ]{ } ∫ - -( )[ ]( )
/ /

2 1 1
1 2 2 1 2

,(37)

Morel and Prieur,11

R b a x xM b= ∫ -0 33 0 33 1. / . / ( ) , (38)

and the author of this study,12

III.   Integral Parameters of LightField

Let us represent Eq. (33) for the diffuse reflectances (DR) RH

as the function of the parameter x b a bb b= +/ ( ) :
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Although Eq. (34) is obtained from the exact solution of char-
acteristic transfer Eq. (3) with phase function (21), its applica-
bility for situations actualiy encountered in nature and espe-
cially for calculations of DR of sea depth requires verification.
For this, let us compare the values of RH  produced by formula
(34) with the values calculated by the Monte Carlo method in
study.7

They approximate DR of the ocean by the expressions

IV.   Comparison With Formulas of Other Studies
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It is seen that Eqs. (34) and (39) provide a good description of
the DR of the sea layer; Eq. (37) is rough, and Eq. (38) is appli-
cable only when x £ 0 2. .

1. This study was reported at the Ninth Plenary Session of Working
Group on Oceanic Optics USSR Academy of Sciences, Batumi,
3–5 Oct. 1984:   V. I. Khalturin  (V. I. Haltrin), ”One Accurate
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