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Self-consistent solutions to the equation
of transfer with elastic and inelastic scattering

in oceanic optics: |. Model

Vladimir I. Haltrin and George W. Kattawar

A new self-consistent two-stream method has been developed that allows for both elastic and inelastic

processes including fluorescence.

parameters that can be selected to fit experimental data.

What makes this method very useful is that it contains adjustable

It also has the robustness to cover a complete

range of inherent oceanic parameters ranging from the very clear to the most turbid. The method also
uses real solar spectral input so that one can also perform chromaticity coordinate calculations for ocean
color. Apparent optical properties such as irradiance and scalar irradiance can be computed at any depth

in the ocean.

1. Introduction

Although the literature abounds with two-stream
approximations! (these references contain a rather
complete listing of most of the relevant papers), we
present here an extension of a new two-stream meth-
od! that will allow for inelastic processes such as
Raman scattering and fluorescence. What sets this
method apart from all other two-stream approxima-
tions is the fact that it has the option of actually
adjusting certain parameters (to be introduced later)
to fit some experimental data obtained from either
real marine waters such as the Mediterranean sea,
Black sea, Atlantic ocean,® and Indian ocean® or
emulated scattering and absorbing media.® This
method also has the versatility to cover a complete
range of inherent oceanic parameters ranging from
the very clear to the very turbid. It allows for both
molecular and hydrosol scattering as well as both
chlorophyll and yellow-substance absorption. At
present the model only allows for a homogeneous
ocean with a flat surface; however, the extension to
an inhomogeneous ocean with a stochastic interface
can be obtained with relatively little work but will
increase substantially the time per calculation. The
input into this model can be quite arbitrary and
allows for a realistic solar spectral input, which is a
sine qua non for inelastic scattering processes.
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2. Basic Equations

A rigorous mathematical treatment of inelastic pro-
cesses such as Raman scattering and fluorescence in
hydrologic optics has not been presented in a system-
atic way in the open literature. For that reason we
need to explain here the physics of our approach,
which is based on the information given in Refs. 7, 8,
and 9, and make the necessary relevant modifications
tothe equation of transfer. We have chosen here the
widely accepted phenomenological approach,!?11.12
which is less rigorous than the approach based on
electrodynamics!? but is reliable enough.

In the classic case (which neglects Raman scatter-
ing and fluorescence) the light energy is absorbed and
scattered elastically. The absorbed part of the en-
ergy, which is proportional to the absorption coeffi-
cient a, was regarded as totally converted to thermal
energy; however, in reality some of the absorbed
energy reappears in fluorescence. The scattered part
of the energy, which is proportional to the scattering
coefficient b, is not lost but reemerges as elastically
scattered light at the same wavelength. There is no
transfer of light energy from one wavelength to
another.

When we include inelastic scattering processes a
new problem arises because the process of the light
energy transfer starts to depend on the light distribu-
tion and optical properties of the medium at a num-
ber of different wavelengths. Fortunately, quite sim-
ilar problems have already been treated many years
ago in neutron transport theory and have come to be
known as multispeed transport.!? The modification
of this method to our problem is quite simple; it



implies that the total scattering coefficient b consists
of both the Raman part b2 and the elastic part % and
adds the corresponding source term to the source part
of the equation of transfer. The principal difference
between Raman and elastic source terms is the
presence of summation (or integration) over excita-
tion wavelengths in the Raman term.

According to the latest studies,?!4 it is more produc-
tive to regard fluorescence in sea water, not as a
scattering process but as a process of re-emission of
light energy by the substances of biological origin
such as chlorophyll @ and dissolved organic matter
(DOM); this re-emission peaks at fixed wavelengths
(approximately 685 nm for the chlorophyll a or red
fluorescence and near 425 nm for the DOM or blue
fluorescence). The lifetimes for these fluorescent
processes are typically of the order of nanoseconds,
which is sufficient time for the emitted photon to lose
memory of the direction of the incident photon, which
also accounts for the isotropy of the fluorescent
radiation phase function. Because we do not con-
sider fluorescence as a scattering process, we do not
make any fluorescent correction to the scattering
coefficient. The only modification regarding the ef-
fect of fluorescence is the addition of a source func-
tion term. The physics of the fluorescent process
adopted in this study is totally consistent with the
approach used previously in the research of Gordon.?

One of the most frequently used equations for
consistency checking of numerical results is Ger-
shun’s equation.’> We provide a brief derivation of
this equation when inelastic effects are present. We
start with the scalar transfer equation for spectral
radiance L(\, r, Q)40 in a medium that allows
inelastic effects such as Raman scattering and fluores-
cence:

[0V + )L\, ¥, Q)

E(\)
= J;p(cos O)L(\, r, )Y

1

+= > f d\'al(N, \)
A <N

47 I=RF
X f pl(cos O)L(\', r, Q)dQ, (1)
Q

where n is a vector in the direction of propagation of
light, ¢ = a + bE + b® is the extinction coefficient, b% is
an elastic scattering coefficient by density fluctua-
tions (Rayleigh) and hydrosol particles, % is a Raman-
scattering coefficient, a = a** + af* is an absorption
coefficient, which consists of a thermal dissipation
part a* and a fluorescent absorption part af’, © =
cos~![cos 6 cos 8’ + sin 0 sin 6’ cos(¢ — ¢')] is a scat-
tering angle, 6, ¢ are the zenith and azimuthal angles
of the radiation, respectively, p(cos ©) is an elastic
scattering phase function, and p!(cos ©) are inelastic
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angular emission functions; all of them (p and p’) are
normalized according to the equation

217 T
f plcos ©)dQ = f dcpf p(cosO)sin8do = 4w, (2)
Q 0 0

where d{) = sin 8 d@ d¢ is an element of solid angle, A
is the wavelength of light, r is a position coordinate
vector, ol(\’, \), (I = R, F) are differential emission
coefficients for Raman scattering (index R) and fluo-
rescence (index F), which are connected with total
inelastic emission coefficients €/ by the equation

1
el(\) f c’()\',)\)d)\’J.p’(cose)dQ', I=R,F.
A<

(3)

These terms allow for energy transport from shorter
wavelengths into the observation wavelength. It
should also be noted that the Raman-scattering coef-
ficient b2(\) and the fluorescent part of the absorption
coefficient af¥(\) are also connected with differential
emission coefficients through the following equa-
tions:

bR()\)=4iJ' cR(x,A’)dx’pr(cose)dQ’, (4)

™ Q

cz”()\)=l > f dh’cF(A,A’)pr(COSG)dQ’, (5)

4w p<Ty o

where indices C and Y, respectively, denote red
fluorescence by chlorophyll and blue fluorescence by
yellow substance. These terms allow for energy
transport out of the observation wavelength region A
to longer wavelengths.

Introducing scalar and vector irradiances according
to

%:fmeL 6)
[9)

E=meMQ (7

and integrating Eq. (1) over solid angle, we get the
analog of Gershun’s equation for the inelastic case,
namely,

divE = —[a* + Aa]E,, (8)

where Aa = (af! — ) + (bR — €F), ! = €C + €.
Equations for a™, €F!, b, and €F are given in Appendix
A. A heuristic derivation of Eq. (8) for the case of
Raman scattering was given previously in the re-
search of Stavn and Weidemann.6

Because we are only interested in the laterally
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homogeneous case we will rewrite Eq. (1) for the
spectral radiance L(\, 2, 0, ¢) in the form

{cos 6% + c()\)}L()\, 2,0,0)=Q(\2z0,¢), (9

> Qnz6,0)

I=R,C)Y
+ QHO()\, 2, 97 cP)7

QN 2,6,0) = QN 2,0,9) +

(10)

where QE(\, z, 0, ¢) is the elastic scattering source
function, 2;.gcy @\, 2, 6, ¢) is a sum of the inelastic
source terms, QHO(), z, 0, ¢), which will be neglected
below, describes higher orders of inelastic scattering,
i.e., higher than first order (Raman scattering and
fluorescence or any combination of them), z is a
vertical coordinate (Oz has its origin on the surface
and is considered positive in the downward direction),
and 6 and ¢ are zenith and azimuthal angles between
the Oz axis and the direction of propagation, so that
0 < 6 < w/2 gives downward radiation and %/2 <
# < w gives upward radiation. We represent the
total radiance as

> Li\z8,¢); (11)

I=R,CY

L(\,z,0,9) = LE(\,2,8,¢) +

here LE(\, z, 0, @) is the elastic radiance, i.e., radiance
in the absence of Raman and fluorescent effects, and
LI\, z, 8, ¢) is the inelastic radiance, I = R (Raman) or
F (fluorescence), F = C (red fluorescence) or F' = Y
(blue fluorescence).

The source terms can be represented as follows:

E(\
QF(\,2,8,¢9)= 4W)fP(COSG)LE(7\,2,9,<P)dQ', (12)
bE(N)
QF(\,z,0,9) = ym plcos O)LE(N,2,0', ¢')dQ'
1
+—f dAVaEO )
417 A <A
X pr(cos O)LE(N 2,07, ¢")dQY,  (13)
bE(N)
QF(\.2,0,¢) = — | p(cos O)LF(\, 2,6’ ¢")d(Y’
1
+—f dNeF(N,N)
4’1T A <A
X pr(cos O)LE(N',z,0’, ¢')dQY,
F=C)Y, (14)
di’ P2 D
o R, 5) = R(zr =
()\ )\) d)\, (V ,V)— kv BO (~ )f ( ) (15)
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UF()\”A) BO Qg ( )C fF()\, }\)7 F=C7 Ya (16)
where ¥’ = k,/\’, and ¥ = k,/\ (in inverse centime-
ters) are excitation and emission wave numbers,
respectively, &, = 1 = 10" nm/cm, ¥, = £,/400 nm =
25,000 cm™1, g, is a specific absorption coefficient of
the fluorescent substance, Cr is a concentration of
that substance, By is its fluorescence efficiency, and
Bo¥ is the Raman-scattering coefficient at A = 400 nm;
fE({’, ¥) (in centimeters) is the Raman excitation
function, normalized according to the following equa-

tion:
R

the fluorescence distribution function fF(A', \) (in
inverse nanometers squared) is represented as

(17)

FRIN,N) = oS (Ve (N), f mfexF(}\)d)‘ =1,

f wfemF()\)d)\ =1, F=CY, (18)

—

where f,.F and f,,,F excitation and emission functions,
respectively (see Appendix A), and pZ(cos O) is the
Raman phase function given by!”

. o _1+3kpcos28 " 0.2
pf(cos ©) = T+%, ) , = 0.2,

(19)
pFlcos O) is the fluorescence angular emittance func-
tion, which is taken to be isotropic,® so p¥(cos O) = 1
sr™!, F = C, Y (for details concerning Raman and
fluorescence models see Appendix A).

Introducing the operator

. d bE )
Te = |cos B wte = dQ¥’p(cos O) |g, (20)

we can divide Eq. (9) for total radiance L [Eq. (11)]
into two separate equations for elastic and inelastic
radiances which will be solved separately in Sections
3 and 4 of this paper

TLE(\, 2,8, 9) =0, (21)

. 1
TLI()\,Z,O,cp)=Ef d)\’fdﬂ’c’()\’,)\)pl(cose)
M <A

x LE(\ I=R,F, F=CY.

(22)

”276”@,)’

3. Approximate Solutions for the Elastic
Anisotropically Scattering Part

In this section we will obtain a solution to Eq. (21) for
the irradiances that will be as simple as possible and
yet have a precision of 5~10% and still be valid for the



complete range of variability of inherent optical prop-
erties, i.e., from very clear to very turbid ocean
waters. In the absence of Raman scattering and
fluorescence the exact equation for the scalar radi-
ance is

LE(z, 6, ¢)

d
cosedz+c

bE
=1 fp(cos O)L(z, 0", ¢ )Y, (23)

where we have dropped the wavelength variable A
because we are only considering elastic scattering.

In this section we will use the approach found
in Khalturin!; namely, we represent the highly
anisotropic sea water volume scattering function
in the form p(cos ©) = pr{cos ©) + p,(cos ), where
pricos ©) = 2B + 2(1 — 2B)3(1 — cos O) is the
transport phase function (see Davison,!! p. 241, and
also Refs. 18 and 19), B = 0.5 f:/zp(cos 0)sin 0d6 is the
backscattering probability, 8(x) is the Dirac delta
function, and p, = p — pr. We will retain only the
transport part, pr, of the phase function and take into
account the influence of p, indirectly by adjusting
mutual dependencies of mean cosines of the scattered
light with empirical relationships derived from exper-
imental results. In order not to overload this paper
with the details and discussions already published we
will use only what is logically necessary from Ref. 1
plus the necessary modifications for inelastic effects.

Let us introduce the renormalized!®!? optical depth
T = ez, where ¢ = @ + 2bg is the renormalized
attenuation coefficient, by = bEB is the elastic back-
scattering coefficient, @ = ¢ — b¥ = a + bF, and £ =
bg/(@ + bg). This renormalization is necessary be-
cause the approach of Ref. 1 implies that the predom-
inant part of the forward-scattered rays are excluded
from the scattered light, which leads to the renormal-
ization b — 2bg. Additional renormalization a —
a + bf is due to Raman scattering. The peculiarity
of this renormalization is the fact that Raman scatter-
ing at a given wavelength effectively increases extinc-
tion simply because all Raman energy is Stokes
shifted to longer wavelengths. The fluorescence (at
least in the interpretation adopted here: a =
at* + af') does not affect any inherent optical property
because it originated from re-emittance of energy
already taken from the light by ordinary absorption
(coefficient a). Using these parameters in Eq. (23),
we get

d
(ua—;+ 1)LE(T, H, @)

1+2),

1 x— 2T 1
=%[ f dcp’f dM'LE(T,W,ﬂP')*'A(T,P«,ﬁP)],
-1

(24)

where

@l - %) ™ ,f ,
Almw @) =g oyir ) 99 _ld"“

0

X [p(p') = prlw)ILE(r, p', @), (25)

where . = cos 9, p’ = cos 0, &y = bF/(d + b¥) =bF/cis
the single-scattering albedo.

Let us represent the elastic radiance as a sum of
scattered and unscattered light?°

LEF=1s+ LA (26)

The unscattered radiance L9 should satisfy the
equation

d
(u s 1)L"(T, m, ¢) =0, (27)

with the boundary condition L9(0, p, ¢) = L¢(p, ¢),
w > 0. Itisnecessary to note here that because L9 is
a sum of unscattered light and forward-scattered
rays, Eq. (27) is not obvious. It is a direct conse-
quence of our approach and can be used only if the
method used in Refs. 1 and 18 is applicable, which is
always the case for sea water.
The solution of Eq. (27) will be

Lq(T’ M, (P) = LOq(“" (P)eXp(—T/l.L). (28)

Then scattered radiance should satisfy the equation

g(7)

T,L® = o g (29)

where

. d 1 & (™
TALSE }.La;“'lLs(T,}L,(P)“% 1+4% d‘P

(1]
1
XJ dp'Le(r, ', ') + A(T, 1, <P)], (30)
-1

with the boundary conditions

Ls(o’ Ly ‘P)Iu>0 = 07 !rl_r)lg LS(T: K, "P) = 0’ (31)

where

x
1+ %

2 1
glr) = f dcpf duLo%(n, exp(—71/p). (32)
0 ~1

It should be noted that the function A(r, p, ¢) van-
ishes in two cases: isotropic scattering (B = 1/2)
and complete forward scattering (B = 0).
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To rewrite Eq. (29) in terms of irradiances, we must
introduce the following definitions?!:

21 1
Ey =f de f L(p, ¢)udp,
0 0

21 0
Ef=- J; de f Le(p, ¢)udp, (33)
-1
21 1
Ey’ =f de f Li(w, ¢)dp,
0 0
27 0
Ey = f dcpf L, @)du, (34)
0 -1

2% 1
Ey = f d‘Pf L(p, ¢)du = Eof + Ey,°.  (35)
0 -1

Let us now introduce the following mean cosines?!:

— E'ds — Eus

Pg = E()ds ’ By = Eous ’

- _ Eds - Eus _ Eds - Eus . (36)
" Ey Ew’ + Ey’

Applying the operators fOZ " de fol dp ... and foz " de ffl
dp . .. to Eq. (29), which neglects A(t, u, ¢), and then
taking A into account indirectly by using the empiri-
cal relations?56 1, = 1/(2 - w)and i, = 1/(2 + i),
we get the following system of equations:

> L(nEy = eg(r),

B=1,2
d )
— -
R dr *q- 9+
L) = . | 6
—xq- - dr +4q.
where
1
e=1.1
2x
==711%
Any Greek index here assumes values: d, u,or 1, 2,

(1ed, 2o u).

We should note here that any two-flow approxima-
tion reduces the transfer equation to a system of
differential equations for the downward and upward
irradiances. This system is dependent on two un-
known parameters, namely, j;, and p,. Different
two-flow approximations adopt different values for
g and p,, usually without any regard to experimen-
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tal data. In this paper we have adopted the experi-
mental empirical equations (p, = 1/[2 + (—1)<],
a = 1’ 2)’ which connect Ed and Eu (El = Ed: ﬁZ = Eu)
with the mean cosine &, which can be calculated from
the exact result (see Ref. 1):

(38)

The system of Egs. (37) has two eigenvalues, —k.,
and ky. Let us impose the last part of the self-
consistency principle,! which consists of the following
two steps. The first is substituting the trans-
port!11819 phase function pr{cos ©) for the arbitrary
highly anisotropic phase function p(cos ©), which
drastically simplifies the equation to be solved at the
expense of precision (see discussion of this method in
Refs. 1 and 2). The second is reclaiming the main
part of the lost precision by (a) using experimental5$
empirical relations between total, upward, and down-
ward mean cosines and (b) equating the values given
by the exact equation for the eigenvalue given by Eq.
(38) with the corresponding eigenvalue of Egs. (37),
which is

(ol Gl ol : g
(1+%)

ke = (39)

This method?? has some shortcomings, but in our
case it works well if we restrict ourselves to the
integral optical properties and irradiances. Using
the results above, we get the following equations for

B, k., and kq: ‘

_ (142~ [5(4 + 53)]/2) 2
m= 1+%
_ 1—x 1/2 L (1_E2)2
Tliv2e a0 T 1v 4ot
(40)
B3 - 1% o
=T ko=T1(4 - p2). (41)

For simplicity we restrict ourselves to the case of
illumination of the sea surface by direct sunlight.
In this case

sin?z,\1/2
’
n,?

L0q<p~‘, ‘P) = LOS(@)S(M' - p‘s)a s = (1 -
(42)

where z; is the solar zenith angle and n, is the
refractive index of sea water. The source function
&(7) has the form

iL,
g(T) = 1+ exp(—*r/us),

(43)



and the solution to Egs. (37) with the boundary
conditions

limE3(z) =0 (44)

Z—»00
for an optically infinitely deep ocean will be

E (1) = Alexp(—kxt) — exp(—7/ )]

45
E,j(x) = R.A exp(—hut) - Bexp(—1/py), D)
where
1— w2
R.= (7L (46

is the diffuse reflectance in the asymptotic regime
(where the radiance distribution is independent of
solar zenith direction), and

fLO(z + E + 1/""5)

A= TT 80 i = k)L + o)
L2 -E-1/w)
B= 0w —kije v k) 47
or
(
E#(1) = LouR, 1 ?srz:kw
X [exp(—kur) — exp(~1/p)]
Ej(e) = Low R fexpl—hur) + ot (49
| x [exp(—k.1) — exp(—T/p.sn] ,
where

m1=1+p“s(2+ﬁ)’ m2=l-|-s(2_ﬁ)_1,

1 (mp
@=1TR. 21+
(1-ppP (1-m)p?

Rs ’ (49)

T 1+ ko 1+ (4 - p2)

where R, is the diffuse reflectance of the sea illumi-
nated by direct sunlight. Unscattered irradiances
are

E (1) = Low, exp(=7/n,),  E(1)=0. (50)

We can rewrite the total elastic irradiances E.E =
E 2 + E and their derivatives in a form convenient
for numerical computation:

EdE(z) = LOH’S exp(—vz)[exp(Zzs) + RansmlDO(z)]’
(51)

EuE(z) = LOP'sRs exp(-vz)[l + 'qum2D0(z)]’ (52)

dE " (2)
dz = LOlJ's exp( —Vz)*l [exp(2zs) + RstmlDz(z)]y

(53)

4B, ()
- = LonR,exp(—valy + nQumoDe)),  (54)

(v - '!])2/2, DO(Z)
tanh(x)/x, D,(2)

where m = €/p,, v = €k, 2,
(2/2)[1 + exp(22,)|f.(z,), filx)
vDo(z) — exp(2z,).

Downward and upward elastic irradiance attenua-
tion coefficients will be

E _ d In EdE(z) exp(zzs) + RstmIDz(z)
ke = = T = M axp(2z,) + RmQumDolz)
(55)
dInEFE) v+ 1@moD,(2)
S N R 2 M

4. Approximate Solutions for Inelastic Scattering
(Raman Scattering and Fluorescence)

Equation (22) in explicit form is

d I
pg+ 1) L(mp,¢)

1 _’f 21 1
e ' rr I ’ ’
—2W|:1+.’f3~[) d‘P f_ldp'L(T’p' ,(P)+A('T,P~,‘P)

+ g%, m, 0) + &%(r, m,0) |, (57)
or

1
=5 (g7 + &%),
F=0CY, (58)

7A‘AI‘I = QI)
I=R,F,

where

21 1
d\ o B\, )\)f d(p’f dp’
0 -1

3
gSR()\9 T, My ‘P) = MJ

A <A
1+ 3k, cos?©

1 + kp ‘Ils(x ’T’ "L b ‘p )’ (59)

27

dr'aF(N, )\)j do’

0

g‘F(RTu<P)=LJ.
T B @) =50

A <X

1
X J. d"",LOS()‘,: “‘I, ‘P')a (60)
-1
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g T, 1 ‘P)=—3—J‘
P 8e(\)

A
1+ 3k, cos?©
1+k,

X exp[— T(“')\,I):I )

21 1
d\'oB(N, )\)f dcp’f dp’
< 0 0

LOq()\’v “"s‘P')

(61)

1 211’ 1
FON T, @) == d)\'FA’,)\f d’fd’
g\ 1,1, 9) 26()\)";“ Ll )o ‘POM
(N’

! ! ! ( )
X LOq(}‘ s, P )exp[— T ’ (62)
and
cos© = pp' + (1 - pH)4(1 - u'?)V2cos(p ~ ¢'). (63)
Eqgs. (58) differ from Eq. (29) only by right-hand

sides. They can be reduced to equations for irradi-
ances in a similar manner. We now have

Y Log(mEgl(7) = e g'(),

B=12

1
e=[1}, a,B=d,uorl, 2, (64)

with the boundary conditions

Efz=0)=0, lmEJ[(z) =0,

Z~»0

a=d,u.

Here the matrix operator I:(‘r) has the form of Egs.
(37) and the right-hand sides g(t) of Egs. (64) become

£0n2) = Ee_tr)f e()\')z]

N <A s

dn'of(\, )

Lo()")exp[ -

+[z—a(mwdsw,z)+[2+a(x>1E,,s(x,z>],
(65)

where the irradiances E# and E,* are given by Egs.
(48).
The solution to Egs. (64) can be represented as

0
~

El(r) = Ala exp(—k,1) + f G(t - 7')g'(')dr’, (66)
0

with
E/ 1 ~ Gi(7) + Giaf7)
E= {E} a= H Gir) = [Gzl(’f)"'Gzz(T)]’

where the constant A! is determined from the bound-
ary conditions and G(s) is the Green’s function
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matrix,? which satisfies the equation

A

D, Leg(1)Gyyl) =

p=12

By (67)

where 8,5 is the Kronecker delta. It is not difficult to
show,! that

1 R —koT
= [L | etk

1 - RyR,
RoRm R() 6(—1-)exp(k0*r)
[Rm 1} T-Ror. = (68

and

G(x) = ky[akyB(r)exp(~k.7) + bO(~7)exp(kyr)], (69)

where
2+ R,
RO_sz—E, b“l:]- ’
b = 1+R, _1+R0
17 1-R,R.’ 2 1+R,.)’

where 6(x) is the Heavyside function. Solutions to
Eqgs. (64) with the boundary condition E/(0) = 0 that
vanish at infinite depths are

El(r) = kl(a

ke f g'(v")exp[—k.(7 — 7')jdr’
0
= Rq exp(—k.1) f g’(T')eXp(—koT’)dT’]
0

+ bJ. gl (" Jexplky(t — T')]dT’). (70)

Equation (70) together with Eqs. (51) and (52) for
elastic irradiances gives the solution to our problem.
Unfortunately Eq. (70) contains many factors in the
expression for gi(t) that become indeterminate at
some wavelengths and unsuitable for numerical calcu-
lations without further analytical modification.
This task can be easily performed,?* and the results
are

ky
E(\,2)= —z—exp(—vz)(a(kzDR ~ RoLg) + bLy),

(71)

dEI » kl
é: ) = Eexp(—vz){(v[a(kZDR — RoLg) + bLy}Y

= (v + ObLy) + (b — k,a)[(1 + £D;)
X exp(2r,) + n exp(2ry)])], (72)




where

L=1/(C+m"),
ri=v-mz/2,
D; = (z/2)[1 + exp(2r,)f.(r),
Dr=D,+nDy+kS, n=pnR (2+5)
S = (22/4){[exp(2ry) + exp(2r)Ifr) flrs)
— [1 + exp(2ry)] £, (r1, 2},
k=2pR/Q ' [ (4 —p'?) - p'],
Lp=1,+1y(n+kly),
Ly=L;+ 1Nk + Lg,

C=€k01 l2= 1/(C+VI),
re=@Wv—-v2/2, ry=ry—ry,

i=1,2,3,

L; =1, exp(2ry),
Ny = (n + kl,)exp(2r,),

1 tanh(x)_tanh(y) .

LK= kD3L1, y—x x y

folx,y) =

Any primed parameter here denotes dependence on
primed wavelength, ie., s = s(A), s’ = s(\’). The
angular brackets (¥'(\', \)) denote integration over
wavelength according to the rule (W(\', \)) =
f dN o I(N, NLo(N)P(N', \), where of(\’, \) are given
by Egs. (15) and (16) and ¥(\', ) can be any function.

The total irradiance attenuation coefficient!%2% can
be calculated according to

where p,/ = E//EE, or
o ki(ksDgr — RoLp + RoLy) ,
P ZLOMS[eXp(ZZS) + Rs’anmlDO]

1o ki(R.(koDg — RoLg) + Ly)'
P T T Lo RJ1 + n@myDy]

' (74)

elastic irradiance attenuation coefficients k£ and k,F
are given, correspondingly, by Egs. (55) and (56), and
coefficients %,/ and &,/ are given by the following
equations:

The total diffuse reflectance will be

E(z=0
R=m+———==R,+ SR, 76
E z=0) I=RE,C,Y (76)
where
6R’—1+ = k1Y 77
= 2L (I; + Ly(n + kI (77)

5. Accuracy of the Method

A. Accuracy With Purely Elastic Scattering

We shall evaluate the accuracy of some of the formu-
las for elastic scattering by comparing them with the
results obtained by a number of other authors. We
shall compare the values we have obtained using our
formulas with the approximate results of other au-
thors,26 using quite accurate numerical calcula-
tions?728 and experimental data.29:30

The relative error of the asymptotic regime attenu-
ation coefficient '

1 - oy _ 1+ 20 — [x(4 + 5x)]V2| V2
v = i > where u = 1+ 2 J
(78)
is shown in Fig. 1; here
bp wyB

x=a+b351—m0(1—B)

The exact values of y computed in Ref. 28 for
different values of wy; and B were compared with the
values computed with our approximate Egs. (78).
In the range of typical marine waters, i.e., single-
scattering albedos wy < 0.6 and backscattering proba-
bilities B < 0.17 errors incurred by using Eqgs. (78)
are less than 6%.

Figure 2 illustrates the behavior of R/x (R is a
diffuse reflectance) as a function of Gordon’s parame-
ter x. We compared our data calculated with the
approximate Eq. (46), shown by the stars, with the
experimental data of Timofeyeva?® (shown by the
solid squares), exact numerical Monte-Carlo represen-

__d _, {(Ro — k3)[(1 + kDg)exp(2r1) + n exp(2ry)] — (v + [RoLw)’
ki e ImE/(z)=v + (oD — Roln & R(}LN>I )
RI= d InEJz) = v+ (1 — RoR.)[(1 + kDs)exp(2ri) + n exp(2rs)] — (v + {Ly)

(Ro(koDp — RoLg) + Ly
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Fig. 1. Relative error of the calculation of the eigenvalue [Eqgs.
(78)] as a function of single-scattering albedo «, for different values
of backscattering probability B. Exact values are taken from
Loskutov.28

tations by Gordon e? al.,?” namely,

Rg% = 0.0001 + 0.3244x + 0.1425x2 + 0.1308x?,
(79)
for direct solar illumination (open upward triangles),
and for diffuse illumination (open downward trian-
gles):
R#F = 0.0003 + 0.3687x + 0.1802x2 + 0.0740x3.
(80)
We also used the Kubelka-Munk formula?® (open
squares), namely,
1= (1 -2y

. (81)

RKM =

Finally we compared our results with values calcu-
lated with the exact formula for a special type of
scattering phase function3! (open diamonds):

Ry=7——[1+x)"-xP,

1-x

1/2
1+(3+ 2\/§)xJ ' (82)

where y =

It is easily seen that Eq. (46) gives the closest
agreement with the exact and experimental values in
comparison with the approximate broadly accepted
Eq. (81).

Additional estimates given in Refs. 1 and 2 show
that this approach gives estimates for elastic integral
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Fig. 2. Ratio of diffuse reflectance R to Gordon’s parameter x as a
function of x according to different sources: (1) Monte-Carlo
calculations for direct solar illumination from the nadir by Gordon
et al.,?" (2) Monte-Carlo calculations for diffuse illumination by
Gordon et al.,2" (3) Kubelka-Munk,?¢ (4) exact values for a special
type of scattering phase function,?! (5) our method [see Eq. (46)], (6)
experimental data by Timofeyeva.2?

optical characteristics in the range of 15% precision
for0 <x < landwy < 0.6.

B. Accuracy With a Combination of Elastic and Inelastic
Scattering

To estimate the actual accuracy of our equations for
irradiances, namely, Egs. (51) and (52) for E,f and
E.E, respectively, and Eq. (71) for Ef and E 2, we
compared our results with the Raman-scattering
Monte-Carlo calculations of Kattawar and Xu!? with
the same inherent optical properties. For the Monte-
Carlo calculations we processed one million histories
at the excitation wavelength to get the inelastic
component, and then we processed another one mil-
lion histories to get the elastic component. These
two calculations took roughly 4 hr on a Silicon
Graphics 4D/340S computer (36 Megaflops). For
the present model, however, calculations on the Mac-
intosh Ilcx (0.4 Megaflops), which produced results
for 165 wavelengths and 51 depths, lasted only 8 min.
The time of calculation with the present model, if
executed on the same type of computer, is roughly 105
times less than the corresponding (for all 165 wave-
lengths) Monte-Carlo calculation. The inherent op-
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Table 1. Optical Properties Used for the Monte-Carlo Simulation and
Analytical Calculations Displayed in Figs. 3(a) and 3(b)«

A (nm) a (m—l) bHyd (mAI) bWater (mfl)
417 0.03289 0.0443 0.00487
440 0.03007 0.0416 0.00386
486 0.02669 0.0373 0.00251
518 0.04894 0.0354 0.00191

“For Raman scattering the corresponding excitation — emission

wavelengths are 417 — 486 nm and 440 — 518 nm.



ing to the data given in Refs. 9 and 38, namely,

o\, N) = Boao“(\')CefEN', M), (A4)
FEN, N = £ 5N) fem€(N),
fen®N) = K exp{— 9%&] (45)
gc

where B,C = 0.0289 nm, a,C is the specific absorption
coefficient of chlorophyll in square meters per milli-
gram, C¢ is a chlorophyll concentration in milligrams
per cubic meter, A®* = 685 nm, o, = 10.6 mm, and
k€ =0.037636 nm!.

The wavelength redistribution of light emitted due
to fluorescence by DOM or yellow substance33:

o\, N) = Bo'ag (M )Cy fY(N', N), (AB)

FYNV,N) = fo" (V) fem (M),

femY<A>=kYexp[— (12”—)} (A7)
Ty’

where BoY = 0.92 nm, a,Y is a specific absorption
coefficient by yellow substance in inverse meters, Cy
is a concentration of yellow substance (dimension-
less), AY0 = 425 nm, oy = 50 nm, and ¥ = 0.00665
nm~!. The chlorophyll excitation function can be
represented as®

c A hexC()\/ACO)’ )\lc < A < )\ZC A8
fe"N) = 0, elsewhere ’ (48)
where A, = 5.06 - 1074 cm, A\;€ = 370 nm, A\,C = 690

nm. Wedo not have enough information concerning
the shape of the f,,Y(\), but in general it behaves
similar to f,°(\) with different parameters; i.e., it is
negligible at wavelengths outside the interval be-
tween A\;¥ = 250 nm and A\;Y = 400 nm and may have a
different coefficient before A\ inside this interval.
Quantum efficiency n¢ for chlorophyll fluorescence is
taken to be n¢ = BCh,C = 0.008 (= 0.8%).°

The fluorescence parts of the absorption coefficient
and fluorescence emittance are represented by

aFl(}‘) = BOC<aoc>emCCfexC()\) + BOY<a0Y>emCYfexY()\)1
(A9)
eFI(}‘) = BOC<GOC>exCCfemC(A) + BOY<a0Y>exCYfemY(}\)’
(A10)
where

<a0F>ex = JAOO aOF()\)fexF()‘)d)\,
<a0F>em = f maoF(}‘)femF()\)d)\’ F = C, Y.
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The angular distribution of Raman-scattered light
is given by Eq. (19), and the angular distribution of
light emitted that is due to fluorescence is isotropic.

This work was partially supported by the U.S.
Office of Naval Research under contract N00014-89-J-
1467.
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