Self-consistent approach to the solution of the

light transfer problem for irradiances in marine waters
with arbitrary turbidity, depth, and surface illumination.
. Case of absorption and elastic scattering

Vladimir I. Haltrin

A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light
scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate
accuracy, this approach uses experimental dependencies between downward and total mean cosines. It
calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary
values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary
conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can
be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes,

and rivers. It can also be applied to other types of absorbing and scattering medium such as paints,
photographic emulsions, and biological tissues. © 1998 Optical Society of America
OCIS codes: 010.0010, 010.4450, 290.4210, 290.7050.

1. Introduction

The majority of existing analytical methods for cal-
culating light fields in scattering media is based on
one or another variant of the two-flow approximation
to the theory of radiation transfer.'-12 The simplic-
ity and convenience of the results that can be ob-
tained with these approximations, and especially the
possibility of one using them to solve inverse prob-
lems, favorably distinguish the two-flow theories
from the potentially more accurate, but much less
convenient, numerical methods for solving transport
equations. This research is an extension of the
earlier papers!314 by Haltrin and Kattawar. Two
important enhancements are made here: the illu-
mination of the sea surface is arbitrary (the light of
the sky and the Sun) and the water layer has a finite
bottom with the Lambertian albedo.

The major difference between this and previous
two-flow approximations (see citations in Refs. 1-4)
is threefold. First, it applies the two-flow equations
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only to the light scattered in all directions except
forward; the wunscattered and forward-scattered
lights are regarded as light sources. Second, this
approach uses parametric dependencies of the two-
flow coefficients on inherent optical properties rather
than making them equal to some constant. Third,
this approach uses experimental data to establish
relationships between two-flow coefficients and in-
herent optical properties. This theory results in a
precise variant of the two-flow approximation that
takes into account the strong anisotropy of the scat-
tering and the asymmetry of the diffuse radiance field
in seawater. The accuracy of the final equations in
some cases approaches the precision of the numerical
computations and matches the precision of in situ
measurements.

There is a perception among some researchers that
the two-flow approximation is imprecise and that its
solutions are inadequate when compared with the
similar values calculated from the solutions of the
radiative-transfer equation. This is true only for
poorly defined two-flow approximations. To show
this, a system of two-flow equations for irradiances is
derived below. This system is totally equivalent to
the original radiative-transfer equation in the sense
that both approaches give the same values of irradi-
ances.
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Let us start from the one-dimensional radiative-
transfer equation?:

d . b .
(u i C)L(cp, B, 2) = f plcos y)L(¢', p', 2)dQ)".
w Q

(D

The system of coordinates here is chosen so that the
x—y plane coincides with the outer boundary of the
medium on which the radiation is incident (sea sur-
face), whereas the 0—z axis is oriented into the me-
dium (to the sea bottom). Here L(z, w, o) is the total
radiance of the light; 6 and ¢ are the zenith and
azimuthal angles, respectively, that determine the
direction of the light propagation, measured from the
positive direction of the 0z axis; ¢ = a + b is the
attenuation coefficient; a is the absorption coefficient;
b is the scattering coefficient; d()’ = sin 6’ d6’ d¢’ is
the element of the solid angle; p(y) is the light-
scattering phase function; and vy is the light-
scattering angle that is determined from the relation

cos y = pp’ + 1 — p” 1 —p'cosle — ¢), (2)

where w. = cos 0, ' = cos 6’. The scattering phase
function is normalized as follows:

f p(cos y)dQ)' = 4. (3)
4

I now introduce the radiance and the scattering
phase function averaged over the azimuthal angle ¢:

- 1 (27 .
L(“" Z) = % .[ L(('P’ M, Z)dﬂP, 4)

0

2m

1
o, p') = 2f p(cos y)de =p(p', p).  (5)
T

0

In terms of these values, the radiative transfer in Eq.
(1), averaged over the azimuthal angle ¢, is

d - b ! _
(P« g C)L(u, 2) = 2.[11_7(M, p)L(p', 2)dp’.  (6)

I also introduce the following apparent optical prop-
erties of downward and upward irradiances:

Ey2) = 2w f L(p., 2)pdp,

0
0o _
E(2) = —21Tf L(p., z)pdp, (7)
-1

and of downward and upward spherical irradiances:

E0) = wflim,z)dm B2 = 2n f L, 2)dp.
0 -1

®)
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The downward, upward, and total mean cosines are

i,(z) = Ed(z)

Ma EdO(Z) )

o _E(2

p’u(z) - EuO(Z) ’

5(2) = Ey(z) - E,(2) ©)

ES(2) +E (2)

The diffuse reflection coefficient and the downward
and upward diffuse attenuation coefficients at depth
z are

R(z) - E,(2) _ B(2)i(2) — (2)]
Ef2)  pa2)iaz) + i2)]
_ 1 dE,(2)
kq(z) = Bz dz
1 dE (2)
k,(z) = B o) (10)
By applying operators 2 [§dw . ..and 27 [, dw . ..

to Eq. (6), we obtain the following exact system of
two-flow equations with respect to the downward and
upward irradiances:

d ¢ bel@]. . el .
{dfad(z) 2@@)] ) = (e B =
bg,'(2) d ¢ bgu"(z)] N
E E =
2ia2) Ot T & e 2 P70

(11)

The first careful derivations of the two-flow equations
were performed by Zege11 and Aas.3 The coefficients
gt 8. 8,2 and g, are given by the following equa-
tions and depend only on depth z:

1 0 _
duf dp'p(p, p)L(p', 2)
-1

gi'z) =" :
f dp'L(p', 2)

duf du'p(w, w')L(w', 2)

84'(2) = : ,
f dp'Lp’, 2)

f duf dp'p(w, w)L(p', 2)

8.(2) = ,
f w'L(p', 2)



0 1 _
f duf dp'p(p, p)L(p', 2)

-1 0

g.(2) = (12)

1 -
f du'L(p’, 2)

0

For the case of isotropic scattering when p(p, n") = 1,
all four coefficients given by Eq. (12) are equal to 1.

If we know the depth behaviors of coefficients g%,
g/ 8,2, and g, mean cosines . and p,, and inher-
ent optical properties b and ¢, we can solve Eqs. (11)
to find irradiances, and these solutions would be
equivalent to the irradiances obtained by Egs. (7) and
(8) from the solutions of the radiative transfer in Eq.
(1) or Eq. (6). However, in many cases we are not
interested in taking this difficult way to find a solu-
tion and only want to solve a simplified version of
Eqgs. (11) by adopting some values for unknown func-
tions g,%, g,%, g,% and g,“ and u, and w,. In this
case we arrived at a standard two-flow approach with
all its shortcomings and degree of precision.

The two-flow approximation derived in this paper
is constructed in such a way that it minimizes the
losses in precision connected with the simplification
of the precise system of Eqgs. (11). The main objec-
tives of the proposed theory are (1) to sustain appli-
cability of all derived equations for any possible
combination of inherent optical properties b and c,
i.e., to make it applicable for all types of water, in-
cluding very clean oceanic and extremely turbid
coastal waters; and (2) to keep the precision of the
derived equations in the same range as those ob-
tained by the contemporary in situ optical probes, i.e.,
in the range of 10-15%.

To achieve this the underwater light was divided
into unscattered and scattered components. The
light scattered in the narrow range of the forward
direction merged with the unscattered light. The
propagation of the unscattered and forward-scattered
component was treated according to the Bouguer law.
The two-flow equations were derived for the rest of
the scattered light (without the forward-scattered
component that merged with the unscattered compo-
nent).

2. Approach

We start from the exact Eqgs. (11) for the irradiances
that are derived from the scalar equation for transfer
(1). To make Eqgs. (11) solvable it is necessary, how-
ever, to approximate the resulting coefficients of the
system of the two-flow equations. We use two main
steps to reduce the exact, but analytically unresolv-
able, system of Egs. (11) to an approximate system
that can be resolved easily. The first step consists of
replacing the initial arbitrary phase function with
the transport phase function. This greatly simpli-
fies equations, but introduces an excessive error.
We reclaim the lost accuracy, in the next step, by
introducing empirical relationships between the
downward cosine p,; and the total mean cosine
derived from laboratory and in situ data.16-18 This

relationship shows that with the change of the Gor-
don et al. parameter'® g = Bwy/(1 — wy + Bw,) be-
tween 0 and 1 (here w, = b/c is the single-scattering
albedo and B = 0.5 [ 5p(cos y)sin +y dy is the back-
scattering probability), the total mean cosine p also
varies between 0 and 1 and the downward mean
cosine ji; decreases from 1 to 0.5.

The main purpose of this research is to obtain
equations that relate inherent optical to apparent
optical properties for any input radiance distribution.
These equations are derived to be valid in the com-
plete range of variability of optical properties of nat-
ural water.

In the transfer theory, requirements of both sim-
plicity and precision are mutually exclusive. For a
successful resolution of the problem, therefore, we
accepted a compromise by determining the degree of
simplicity and precision.

A. Background

We refer to our method as the self-consistent method.
For a better understanding of the idea of the method,
we quote an example from classical mechanics,2°
from which it was adopted. Suppose we have to ob-
tain the equation of motion of a material body around
some center of attraction. The law of attraction is
unknown, or it is known only partially. In addition,
we have some information on the shape of trajectories
in the form of dependencies between the integral pa-
rameters of these trajectories. This problem can be
solved if we use the available information to con-
strain the acceptable solutions. In this example
knowledge of additional information on consequences
(trajectory parameters) makes it possible to compen-
sate for the lack of information on causes (attraction
forces).

In the theory of radiative transfer the main causes
are the inherent optical properties such as the scat-
tering law characteristics (volume-scattering func-
tion and single-scattering albedo), and the main
consequences are the apparent optical properties,
such as the angular distribution of radiance, as func-
tions of depth. As a rule, the volume-scattering
function is only approximately known, with unknown
precision.

Thus, in our attempts to solve the problem of light-
field calculation in a scattering and absorbing me-
dium, we restrict ourselves to the simplest transport
approximation of the volume-scattering function.
The information that is lost through this simplifica-
tion can be restored by accepting functional depen-
dencies between the integral parameters of the
radiance angular distribution, which are derived
from an approximation of the experimental data.

B. Formulation of the Approximate Method

We now start from the scalar Eq. (1) and describe the
transport of optical radiation in a sea with depth zg.
In anisotropically light-scattering media such as sea-
water, the scattering phase function p(cos v) has a
distinct diffraction peak?! neary = 0. The light rays
that are scattered in a small solid angle near the
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forward direction (y ~ 0) form the halo part of the
scattered light.22 They are, for all practical pur-
poses, indistinguishable from the unscattered rays.
This suggests that the halo part of the rays should not
be considered as scattered light. It means that the
forward diffraction peak should be eliminated from
the scattering phase function.

We separate the main part of the halo rays by
representing the scattering phase function as a sum
of isotropic and anisotropic parts:

p(cos y) = 2B + (1 — 2B)p;(cos v), (13)

p(cos y) — 2B

pylcosy) =

, f Dps(cos y)dQ)' = 4,
47 (14)

where 3(x) is the Dirac delta function23 and B is the
probability of backscattering. With the elongation
of the scattering phase function, the following rela-
tion is valid24:

lim py(cos ) = 25(1 — cos y) = 4md(¢ — ¢")3(1 — 1)
(15)

Next, we introduce the following auxiliary scatter-
ing phase function:

plcosvy) = 2B + 2(1 — 2B)3(1 — cos v),

f plcos y)dQ' = 4w, (16)
4

By substituting p(cos y) with its equivalent j(cos ) +
[p(cos y) — p(cos )], we can rewrite the radiative-
transfer equation in Eq. (1) in the following equiva-
lent form:

d . bg [ - b
nw_—ta L(Z, ) ‘P):i L(Z, p“’a (P,)dQ’ +—
9z 2m 4

X f [p(cos y) — p(cos v)]

X L(z, p', AV, an
where by = bB is the backscattering coefficient and o
= a + 2bg is the renormalized attenuation coefficient.

Let L, (i, ¢) be the radiance of light just below the
sea surface,i.e.,atz = +0. Next,let L(z, u, ¢) be the
radiance of the scattered component minus forward-
scattered rays. We represent L(z, ., ¢), the total
radiance at depth z, as a sum of scattered light in all
directions except forward, L(z, ., ¢), and a compo-
nent L_(p, ¢)exp(az/p), which is a sum of direct and
forward-scattered light:

L(z,p, ¢) =
L,(u, e)exp(—az/p), 0<p=1
L(z,u,@)+{0q(“ plexpaz/n, OTk=1
(18)

3776 APPLIED OPTICS / Vol. 37, No. 18 / 20 June 1998

The coefficient &« = a + 2bg introduced here can be
regarded as the beam attenuation coefficient for the
sum of the unscattered and forward-scattered light.

On the right-hand side of Eq. (18) we did not in-
clude the light reflected from the bottom. By doing
this, we assume that either the sea layer is optically
thick (azg > 1) or its lower boundary reflects light
according to Lambert’s law.

After substituting Eq. (18) into the exact Eq. (17),
we obtain the following equation for the radiance of
scattered light:

F)
(u —+ 0L)L(z, n, @) =
dz

bBEO(Z) + Q(Z, M <'P) + A(27 M <'P)
21 ’

(19)

where E°(z) is the scalar irradiance by diffuse light:

2w 1
E’2) = f do’ f L(z, n', ¢")dp', (20)
-1

0

and q(z, W, ¢) is the source function:

_0b
Q(Z,M,‘P)—zj

0

2m 1
de’ f pleos ) Ly, ¢)
-1
X exp(—az/n')dp' — 2wb(1 — 2B)
X L, (., @)exp(—az/p),

b 2m 1
Alz, b, @) = J de’ f [p(cos )
0 -1

(21

2

= pleos y)]L(z, ', ")dp". (22)

The function A, given by Eq. (22), describes all the
differences in scattering between real seawater with
phase function p(cos y) and the simple analytically
resolvable model with transport scattering function
p(cos v). Equation (19) is completely equivalent to
Eq. (1). The approximation that uses the function
A(z, w, ¢) in Eq. (19) corresponds to inclusion halo
rays in the nonscattered light radiance.

Note that the value of A, given by Eq. (22), vanishes
in the following two limiting cases: (a) for the iso-
tropic scattering when p(cos y) = 1 and (b) for the
extremely anisotropic scattering with the delta-
shaped phase function p(cos y) = 23(1 — cos v).

3. Equations for Irradiances

Because Eq. (19) includes an arbitrary phase function
p(cos v), it cannot be solved analytically. By drop-
ping the difference between the real and the trans-
port phase function (A) we can reduce our problem to
the case of exactly solvable isotropic scattering.
However, an ellipsoidally shaped radiance distribu-
tion, obtained in this case in the depth of the scatter-
ing medium, poorly describes the experimental and
in situ results of Refs. 16—18. In the next step, by
dropping the difference A between the real and the



transport phase functions, we can take into account
its effect in an indirect manner.

We seek a solution of the problem given by Eq. (19)
in the two-flow approximation by formally setting A
= 0 and assuming that the radiance distribution of
scattered light within the ocean is described by the
following asymptotic formula:

L(z, ) &« L™ (p.)exp(—kcz),

L () _ A=) 1 f ' L(wdp=1. (23)
(1-aw’" 2,

We derived this angular radiance distribution L”(j)
from the experimental results of Refs. 16—-18. In
relation (23) the value « is the parameter of the deep
regime, and %k, = kc is the diffuse attenuation coeffi-
cient in the depth when the asymptotic light regime
is established.25-27 The value j is the mean cosine
over the normalized radiance distribution L*(w)
given by relation (23), i.e.,

1 1
m= 2J. L7 (w)pdp. (24)
-1

Relation (23), if we apply it to the total radiance, is
valid only in the asymptotic depth regime, which
means that it is not applicable in the areas near the
surface and bottom where the asymptotic regime is
not established. These intermediate layers have
vertical dimensions of the order of the optical depth
orc !. When relation (23) is applied to the scattered
portion of light, its range of validity expands and the
size of the intermediate layers decreases. Diffuse
illumination of the surface and Lambertian-type re-
flection of the bottom also improve the applicability of
relation (23).

The approach used here has an analogy in classical
mechanics.20 It corresponds to replacing unknown
forces by known constraints (the method of the La-
grange multipliers). The force corresponds to A and
the constraints correspond to the adoption of the ra-
diance distribution given by relation (23).

To derive two-flow equations we introduce irradi-
ances E; and scalar irradiances E,° for the diffuse
light from above (i = 1) and from below (i = 2) by the
following equations:

2 1
E\(2) =f dcpf L(z, p, ¢)pdp,

0 0

2 0
Ey(2) = — f dcp.[ L(z, p, o)pdp, (25)
-1

EIO(Z) .[ L(Zy s ‘P)dP«,

0
2m
_ f do
0 0
2w
Ezo(z) = f de
0

0
f L(z, w, ¢)dp. (26)
-1

Here index i = 1 corresponds to the downwelling
irradiances and index i = 2 corresponds to the up-
welling irradiances, ie.,E, =E,;, E,=E,,E,"=E,°,
and E,° = E,°. The average downward w,(z) and
upward pg(2z) cosines are defined according to the
formulas

E\(2) Ey(2)

EIO(Z) ’ Ezo(z) -
We apply the radiance distribution given by relation
(23) to Eqs. (27). After simple integration, the fol-

lowing formulas for downward and upward mean co-
sines are obtained:

B1(2) = pa(z) = Pa(2) = o (2) = (27)

1
P"l(z)_>l1'1§|~’~d:72 -,
-
(2) ! (28)
— Wy = = .
Pol2 Pg = Py 2+ 0

Note that, according to the experiments,'6-18 the re-
lation p,; = 1/(2 — p) is satisfied with high accuracy
for the asymptotic radiance distributions inside mod-
eled scattering and absorbing media and in the sea.
It is valid for arbitrary values of a, b, and by if the
asymptotic or depth regime is established.

We use Eq. (19) with A = 0 and integral operators

2w 1 2w 0
J. dcpf pdp .. f dcpf pdp ..., (29)
0 0 0 -1

then apply Eqgs. (25)—(27) and replace average cosines
w;(2) by the values given by Eqgs. (28). As a result,
the following matrix equation for the downward and
upward irradiances E; and E, is obtained:

LyE\(2) = fi(2). (30)

The differential matrix operator L., in Eq. (30) has
the following form:

%+ (2 — e+ bp)

—(2 - pbg

—(2+ p)bg
Lik = d .
—&—i— 2+ p)a+ bp)
31
The source functions f; and f;, on the right-hand side
of Eq. (30) can be expressed by the scattering phase

function p(cos y) and the radiance distribution just
below the sea surface:

A2 =b f " de f du[2B — b(w)]

0 0

X Ly(p, ¢)exp(—az/p), (32)

fu(2) = b f " de f dp()

0 0

X Ly(w, ¢)exp(—az/p), (33)
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where

1 1
() = 2] p(—p', pwdp’,
0

2m

1
P, p')= o f p(cos y)de. (34)
n

0

In Eq. (30) and elsewhere in this paper the repeated
indices imply summation: u;v; = 2; u,v;.

The negative eigenvalue of the system of the two-
flow equation in Eq. (30) is given by the formula

—o,, = e + bg) — [4ala + 2bg) + p2b5%]Y%.  (35)

On the other hand, the exact eigenvalue for both Egs.
(1) and (19) is determined by Gershun’s formula2s:

a

. (36)
v

O, = KC =

Now let us accept the fact that the diffuse attenu-
ation coefficients given by Egs. (35)—(36) match, i.e.,
we force the radiance distribution for scattered light
to match the experimental distribution given by Egs.
(23). In this case it is possible to find ., and i as
functions of the inherent optical parameters of the
medium a and bz. We can now solve Egs. (35) and
(36) relative to . The result is the following for-
mula that connects the mean cosine with the absorp-
tion and backscattering coefficients a and bz [or
Gordon’s parameter g = bg/(a + bg)]:

1/2
_ a
me [a + 8bp + [bp(4a + 9bB)]”2}

1-g 1/2
- [1 +92g + [g(4 + 5g)]1/2]

(14 2¢ - [g(4 +59)]V2)"?
B 1+g ’

(37)

From Eqgs. (36) and (37) it is easy to obtain the equa-
tion for the deep regime parameter k = «../c (i.e., the
depth diffuse attenuation coefficient in the units of
the beam attenuation coefficient c):

k= (1~ o)
% (1 . 3Bw, + {Bwo[4(1 — wy) + 9Bu)0]}1/2>1/2
1—w,
1+ g 1/2
=(1- 0)0)[1 + 2g — [g(4 + 5g)]1/2] s (38)

where o, = b/c = b/(a + b) is the single-scattering
albedo.
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4. Solutions for Irradiances

We now look for a solution to Eq. (30) as a sum of the
general (the first two terms) and partial (the last
term) solutions?23:

E(z) = Aa, exp(—a..z) + Ee; exp(ayz)
+ f Gu(z —2') fi(2)dz,
0
E,(z) = Aa, exp(—a..z) + Ee, exp(ayz)

+ .[ P Gz — 2 fi(2))dz. (39)

0
where
oy = pla + bp) + [4ala + 2by) + P62 (40)

is the second eigenvalue of Eq. (30), and a; = e, = 1,
a, = R, and e; = R, where R, and R, are given by
the following equations:

(2 — p)bg

E.= 2+ i@+ by) + w
(2 — )@+ by — a. C—ﬂZ
= = . 4‘1
(2 — L)bg 1+ 4D
R, (2 + R)bg

T2 @)@+ by + a
:(2+@)(a+bB)—ao:<2+@
2~ )bg

Below we show that R, is the diffuse reflectance co-
efficient of an optically infinitely deep sea measured
far below its surface or illuminated by diffuse light.

The constants A and E in the solutions given by
Eqgs. (39) are determined by the boundary conditions.
Green’s matrix G;,(z) in Eqgs. (39) satisfies the follow-
ing matrix differential equation:

- @)Rm. (42)

LiGu(2) = 8,3(2), (43)

where §;;, is the Kronecker symbol (or the unity ma-
trix). After some algebra it is possible to show that
Green’s matrix has the following form:

1 R,
R. RR.

R,R. R,
R, 1

H(2)exp(—a.z)

 1-RR.

H(—2z)exp(a,z)
1—-RyR.

Gu(2) = ‘

+ , (44

where H(z) is the Heaviside (or step) function:

1, z>0,

H(z) = {0 z2=0. (45)

First we substitute Eq. (44) into Egs. (39) and then
impose the following two-boundary conditions at the



levels of the sea surface (z = 0) and the sea bottom (z =
zR):

E,(0) =E,, Ey(zp) = AE;(2p) + E/(2p)], (46)

where Ag is the Lambertian albedo of the bottom and
E/is the total downward irradiance produced by the
direct and forward-scattered light:

Ef(z) = f " de J. L,(, ¢)exp(—az/pw)pdp,

0 0
E/(z)=0. 47

As a result, the following equations for descending and
ascending irradiances of diffuse light were obtained:

E\(2) = [E, + M(2)]lexp(—a..z) + RoN(2)[exp(az)

— exp(—a.z2)], (48)
Ey(2) =R.[E, + M(z)]exp(—a.z) + N(2)[exp(xz)
— RyR.. exp(—a..2)], (49)
where
M(z) = 1—1Rol’h J.: dz'{[ f1(2") + Rofs(2")lexp(a..2")
— Ro[R.f1(2") + fo(2")]lexp(—apz')}, (50)
N =22 Beg oy T B =
(2) = RoAg [Eo (zp)Jexp(—vzp) 1—- R,R.
X f d2'[R.fi(2") + fol2)Jexp(—apz’) + R‘sz

X f ’ de f B, (1, @)exp[—(ag + a/p)zp]udp,

0 0

(51)
1-R)A
2y = TR 1 Ry exp(-vzy)
0
£, = Ap — R. (52)
B 1 _R()AB ’

 2a n? :a7+2‘12_ﬁ4
o’} 3_}12 .
(53)

For the totally diffuse illumination of the sea sur-
face we choose the simplest way to solve the problem.
That is, assume that the irradiance of light from ex-
ternal sources passing through the upper boundary,

2 1
qu=E1f(0)=f dcpf L, o)pdp,  (54)

0 0

is completely diffuse. Then we take it into account
simply with the help of the boundary condition E,(0)
= qu and by simultaneously setting external sources

f:(z) = 0. On this basis we make the following sub-
stitutions:

Az —R,
E,=E, M(z)=0, N(z)=E, 133 A
0=B

(55)

In this particular case, Egs. (48) and (49) were trans-
formed into the following solutions for the downward
and the upward diffuse irradiances:

1 - R AB
E z)=E\(z) = qu (ABI;O) {1+ Ryép
X exp[—v(zp — 2)Jlexp(—a..2), (56)
_ _ 0 (1 - ROAB)
E (2) = Ey(z) = E, AR, {R.+ &
X exp[—v(zg — 2)[lexp(—a..2). (57)

5. Diffuse Attenuation Coefficients for Diffuse
lllumination

We now calculate downward [k, = k; = —d In E(z)/
dz] and upward [k, = ky = —d In Ey(z)/dz] diffuse
attenuation coefficients for irradiances. Substitu-
tion of Eqgs. (56) and (57) in these definitions yields
the following results:

. al-uRi@

k@) =ha(@) = - P

_ _aR.—niz)
R@) =) = - (58)
where
&(z) = gpexpl—v(zp —2)], —1=¢&(2)=1, (59)
= g~ R. -mn <

n—g_RO, 4/3=m=3. (60)

The formulas for R, R, v, and jL are given by Eqgs.
(41), (42), (53), and (37). The values for k; and &,
computed by use of Petzold phase functions2® can be
obtained from published computations for ., and p,
in Table 1 of Ref. 12.

Figure 1 illustrates the behavior of the parameters
%, kg = B, R, and R, as functions of Gordon’s pa-
rameter g = Bwy/(1 — 0wy + Bwyg).

6. Transmission and Diffuse Reflection Coefficients

We now calculate the transmission coefficient of the
layer (0—z) for diffuse light 7(z) = E, (z)/E,(0) and
the diffuse reflectance coefficient R(z) = E,(z)/E (z)
of the shallow sea. By use of Eqs. (56) and (57) it
was easy to obtain the following equations:

_ 1+ Rué(2) 3
T(z) = 1+ Ryi(z)exp(—vz) exp(—a..z), (61)
R+ @) _A;-R.
R(Z) - 1 + Rog(Z) ’ ‘E(Z) - 1 _ ROAB Tw
Tv = exp[_V(ZB - Z)]y (62)
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Fig. 1. Behavior of the optical parameters ., p; = pq, R.., and R,
as functions of Gordon’s parameter g = Bwy/(1 — wy + Bwy).

where v is given by Eq. (563). Figure 2 displays 12
density plots of the diffuse reflection coefficients R(z)
as a function of Gordon’s parameter g and the trans-
mission T, for a set of bottom albedos Ap.

By setting z = 0 in Eqgs. (62), we can obtain the
diffuse reflection coefficient of an ocean with depth z5
and the Lambertian bottom albedo Az. The result is

_ R, + & exp(—vzp) Az — R,
1+ RO'EB eXp(—sz) ’ 1- ROAB '

Equations (63) generalize the formula for the diffuse
reflection coefficient known as Kubelka—Munk?:3° for
ocean-type absorption and anisotropically scattering
media with a reflecting bottom.

The limit at vzz — «© in Egs. (63) givesus R — R....
Consequently, the value R, corresponds to the diffuse
reflectance of the optically very deep sea illuminated
with diffuse light. The formula for R., as a function
of inherent optical properties @ and by is

€p (63)

—\2 1/2
R = 1=p) a
” (1 + ,1) P {a + 3by + [by(da + 9b3)]1/2] '

(64)

Equations (64) can be used for computation of the
diffuse reflectances of deep seas with arbitrary tur-
bidity without any restrictions on the values of by
and a. The values of the diffuse reflectance coeffi-
cient computed with Eqgs. (64) are close to the exact
values of the diffuse reflectance coefficient calculated
for the delta-hyperbolic scattering phase function.3?

7. Asymptotics

We now investigate the asymptotics of Eqs. (64) for
small and large ratios of the backscattering coeffi-
cient to the absorption coefficient bgz/a.
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Fig. 2. Diffuse reflectance of the sea with the Lambertian albedo
plotted as a function of Gordon’s parameter g and the transmission
T, = exp[—v(zg — z)] for different bottom albedos. The Az num-
bers are given in percent in the upper left corners of the density
plots.

In the limit when bgz/a — 0, i.e., when absorption
predominates, for the average cosine we have

bp\"* 3(bp\** 1(bs\?
i=1-(—2) +5(2] -2~
" (a) 8\a 8\a
39 (b;\"? by
——|—= — <1 65
128(&) " a ’ (63)

and for the diffuse reflection coefficient,

16, 1/6:\**  3(b;\"* 5(bg\Y° b
R.=- "+ (2] - F] + (7], T<1
4a 4\a 32\ a 64\ a a

(66)

The numerical analysis shows that the first term in
Eq. (66) varies from Eq. (35) in Ref. 3 by Aas, calcu-
lated with the Petzold phase functions,21:29 in the
range of 15%.

For the media with low absorption we have another
asymptotic formula:

R, = 1—27>/<1+27) N (67)
e \“‘6bB \“‘6bB ’ a ’

In the case of isotropic scattering, Eq. (67) coincides
with the asymptotically correct formula derived by
Gate.32



8. Arbitrary lllumination

After examining the conditions for reflection and
transmission of light by the upper boundary,33? we
determined the angular distribution of the brightness
created by external sources. We found the source
functions f; from Eq. (32). At the same time, Egs.
(48) and (49), in which E, = 0 [because of the bound-
ary condition E,(0) = 0], give the solution to the
problem. This approach is also suitable for the case
of combined illumination of the surface by direct and
diffuse light.

For the case of arbitrary illumination of the surface
of an optically infinitely thick ocean, the diffuse re-
flection coefficient is derived from Eqs. (48) and (49)
atz = 0O:

R=(1—n>2jwd¢f

XP+ 2g;mw—3}
1+ B

where J(w, ¢) = E_(u, cp)/Eq0 is the normalized dis-
tribution of the lig(ilt radiance transmitted through
the sea surface and the function s is given by Egs.
(34).

In the presence of direct Sun illumination in the
directions (u,, ¢,), the normalized irradiance is given
by the formula

J(p, ¢)pdp
1+ pp4—-p%’

(68)

1
Ji(p, @) = —8(@ — @)3( — ). (69)

S

Substituting Eq. (69) for J, into Eq. (68), for the dif-
fuse reflection of the sea illuminated by the direct
sunlight we obtain

(1-p)y?

14 pp4 - pd) '

1+p> B

(70)

When the phase function is isotropic in the backward
hemisphere, the function s is equal to the probability
of backscattering, i.e., Y(n,) = B. In this case we
obtained the following simplified variant of Eq. (70):

(1-p)y
=5, 71)
1+ (4 —p?) (

where
w, = [1 = (sin Zs/n,)*1"* =[1 = (cos h,/n,)*]"* (72)

is the cosine of the angle at which the direct sunlight
enters the sea, Zg is the Sun zenith angle, A, = 90° —
Zg is the Sun elevation angle, and n,, =~ 1.34 is the
refractive index of seawater.

We now consider the case of combined illumination
of the sea surface by the direct light of the Sun and
the diffuse skylight. By use of Eq. (68) it is easy to

obtain the equation for the diffuse reflection coeffi-
cient of the optically deep sea:

_R.+sR, &
 1+s S_EO'

Here R.. and R are given by Egs. (64) and (71); E, and
E, are, respectively, the downward irradiances from
direct sunlight and from diffuse light in the sky.
Both values are measured just below the sea surface.

The quantity s depends on the transmission by the
sea surface34 and the optical parameters of the atmo-
sphere.3>

R, (73)

9. Inverse Problem

The inverse problem according to Tao et al.12 consists
of calculating the absorption and backscattering co-
efficients of seawater from the remotely measured
reflectance of the ocean. The remote reflectance of
the ocean that is due to the averaging over large
areas of the sea with different surface wave patterns
is proportional to the diffuse reflectance of the ocean.
The diffuse reflection of the ocean that is measured
near the surface is given by Eq. (70). In the majority
of important remote-sensing cases, the difference be-
tween the surface diffuse reflection coefficient of the
sea and the diffuse reflection coefficient of the same
sea measured in its depth are insignificant, i.e. this
difference lies in the range of the precision of the
measurements.36-38 In this case the inverse prob-
lems of calculating inherent optical properties a and
by of the sea are reduced to the reverse of Eqs. (64).
By resolving this equation, we can obtain the follow-
ing formula for the absorption coefficient:

a = bpdPy(R.), (74)
. 2
Dy(R.) = A= \R.) (L; 4\R. + R . (75)

Comparison with the numerical computations by the
Monte Carlo method shows that the function ®,(R..) is
more preciset than with the Kubelka—Munk function?:

®dx=(1-R.)?*/(2R.). (76)

It is especially true for smaller diffuse reflectances R,
= 0.5, typical to open and clean coastal ocean waters.

10. Validation

To validate the presented theory, an extensive set of
Monte Carlo calculations3® of the apparent optical
properties in the broad range of inherent optical
properties a, b, and p(cos y) was conducted.3” As
input parameters, all 15 Petzold phase func-
tions2:29 with the associated absorption and scat-
tering coefficients were used. Each run consisted
of ten million histories. The Sun elevation angle
h, varied from 0° to 90° in 2.5° steps. The total
number of runs was 555, and each run produced
outputs for 401 depth intervals. Because the self-
consistent approach can be used to calculate direct
light precisely and scattered light approximately
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Fig. 3. Ratio R/g of the diffuse reflectance coefficients to Gordon’s
parameter g plotted as a function of g. The values of R/g com-
puted with Eqgs. (64) are compared with the similar values com-
puted by other approaches (see the formulas in Appendix A). The
inset shows the diffuse reflectance coefficient of the optically deep
sea as a function of parameter g. The curve was plotted by use of
Eqgs. (64). The filled circles represent the experimental values of
Timofeyeva.40

with Egs. (23), the largest errors for irradiances are
located inside the two layers near the sea surface
and the sea bottom. The overall differences be-
tween the numerical values and the values com-
puted by the presented equations were always less
than 14.7%.

One of the most important parameters calculated
here is the diffuse reflection coefficient of an opti-
cally infinitely thick ocean. This parameter is
given by Eqs. (64). The values of the diffuse re-
flectance coefficient computed with the theory and
the experimental values measured by Timofeyeva4°
match with the precision of 10% for the entire range
of inherent optical properties (see the inset in Fig.
3). Figure 3 displays the values of R..(g)/g as a
function of Gordon’s parameter g. The values of
R.(g)/g in Fig. 3 were computed according to Eqs.
(64), formulas proposed by other investigators (see
Appendix A), and values computed with the Monte
Carlo simulation. Figure 3 shows the advantage of
Eqgs. (64) in comparison with the Kubelka—Munk
and Morel-Prieur4! formulas. The differences be-
tween theoretical and simulated values are less
than 7% for the presented case.

Comparison of the calculated values with this the-
ory and computed with the Monte Carlo simulation
diffuse reflectance coefficients of the sea illuminated
by the direct light of the Sun is shown in Fig. 4. The
errors between values calculated with this approach
and simulated values are in the range of 12% for all
computed cases.
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Fig. 4. Ratio of the diffuse reflectances r = R (h,)/R,(90°) plotted
as a function of the Sun elevation angle 2,. The open circles show
the values calculated by use of Eq. (71). The filled circles repre-
sent the similar values computed with the Monte Carlo procedure
for the Petzold phase function number 14 (see Refs. 37 and 39).

One of the most practically important results for
optical oceanography is shown in Eqgs. (64), which
connect the diffuse reflection coefficient R, with the
backscattering and absorption coefficients b5 and a.
Equations (64) are more complex than the widely
overused equations R., = kybg/a or R, = kybg/(a +
bp), 0.2 =k, = 0.35, but they are valid in the entire
range of variability of optical properties bz and a.
Figure 5 shows the results of the sensitivity anal-
ysis of this equation. The shaded area displays
10,000 values of R, computed with Eqs. (64) for
randomly generated . with the simulated error in
the range of =15%. The filled boxes in Fig. 5 show
the experimental values of R_, taken from Ref. 42.
This figure shows an almost perfect fit between the
theoretical formula [Eqs. (64)] and the experimen-
tal data. The relative error of computing R, with
Eqgs. (64) depends on the relative errors of bz and a
through the following equation:

4g(1 —g) o

(77
1-5% o (77)

AR, (b, Aa
R. ANby a

=k ) ylg) = -

The functional dependence of the coefficient %, is
shown in the inset of Fig. 5. The coefficient k., is less
than 1.0 in almost all cases except a very smalfregion
near g = 0 where it reaches maximum £, ~ 1.03.
This means that, in the worst case, when Ag 5 and Aa
have different signs, we should measure b; and a
with at least 7.5% error to achieve 15% precision for
R..
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Fig. 5. Comparison of theoretical values of the diffuse reflection
coefficient given by Egs. (64) with the experimental values pub-
lished in Ref. 42. The inset shows the dependence of coefficient k&,
in Egs. (77) on parameter g.

11. Conclusions

The self-consistent variant of the two-flow approxi-
mation presented here is good for any values of the
inherent optical parameters of seawater. The equa-
tions obtained here give more accurate values for the
apparent optical properties than the Kubelka—Munk
and other well-known theories. This approach cal-
culates irradiances, diffuse attenuation coefficients,
and diffuse reflectance coefficients in waters with ar-
bitrary scattering and absorption coefficients, arbi-
trary conditions of illumination, and the sea bottom
with the Lambertian albedo. This theory can be
used successfully for computations of apparent opti-
cal properties in open and coastal oceanic waters,
lakes, and rivers.

Appendix A: Formulas Used in Fig. 3

The following formulas proposed in different publica-
tions were used to display ratios of R/g in Fig. 3.

The diffuse reflection coefficient for the direct Sun
illumination at nadir was computed with the Monte
Carlo simulation by Gordon et al.1®:

R =R, =0.0001 + 0.3244g + 0.1425g>
+0.1308g% (0.1=g=0.5). (A1)

The diffuse reflection coefficient for the diffuse il-
lumination was computed with the Monte Carlo sim-
ulation by Gordon et al.1®:

R =Rg, =0.0003 + 0.3687g + 0.1802g”

+0.0740¢%, (0.1=g=0.5). (A2)

The diffuse reflection coefficient was calculated ac-
cording to the theories of Gamburtsev,® Kubelka and

Munk,> Sagan and Pollack,” and Coackley and
Chyleks® [Eq. (13) of Ref. 8 with 7, — o]:

_a+bg— yala + 2bp)

RERKM— bB
_ _ 52 _ _
J1oV1og ltg-Nlog o
g 1+g+\1-g

The empirical diffuse reflection coefficient was cal-
culated according to Morel and Prieur4:

by 0.3
B j, 0=g=02). (Ad)

R=Ryp=0.33—
a 1-

The exact diffuse reflection coefficient was calcu-
lated for the delta-hyperbolic phase function of scat-
tering according to Haltrin3:

1-~h —s
R ERH: (M)(h — \sl + hz)z,

— 1-g

a 1/2 1/2
= | =——°2 _ | . (A
LL + 4+ 2\/5)63} L + (3 + 2\/§)g] 4o
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